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Abstract- The implementation of a cosynthesis design flow
in the CASTLE system is presented. The design flow gener-
ates a synthesizable hardware description and a C, C++,
or Fortran compiler for an application-oriented processor.
The approach is illustrated by the design of an embedded
video compression system which can be integrated into the
video card of a PC. The design flow is structured as fol-
lows: First, the requirements of the application programs
are analyzed. Based on these analysis results, the designer
decides on the appropriate processor structure. The proces-
sor structure is entered on a block diagram level into the
CASTLE system by using a schematic entry. The CASTLE
system performs the processor cosynthesis based on a
VHDL library of processor components. Several processor
datapaths for the video compression system were synthe-
sized to illustrate the trade-offs between flexibility and per-
formance when designing application-oriented processors.

1.0 Introduction

As mentioned by K. Hwang [18], achieving peak perfor-
mance in a computer system demands a perfect match
between the machine capability and the program behavior.
Embedded Systems (ESs) [6] are special computer systems
which perform specific functions within a host system. The
statement above suggests a two step procedure for design-
ing high-performance ESs: First, the requirements of the
ES’s application domain should be analyzed and second,
the ES should be designed in such a way that it matches the
determined requirements. Realizing this procedure in form
of a system-level synthesis tool poses a number of chal-
lenging problems. The paper describes the approaches used
for solving these problems in the CASTLE (Codesign And
Synthesis TooL. Environment) system [6].

One of the most challenging problems in ES design is the
necessity of a multidisciplinary approach [6]{32][4]. The
knowledge of the application domain, the software (SW)
area, the hardware (HW) design, and the design automation
must be combined to build a high-performance ES in an
efficient design process.

For example, the following design time distributions were
experienced when manually developing an RT level hard-

ware description and the necessary software for video pro-
cessing systems [31]: 10% of the time for developing the
concept, 30% for developing the HW description, and 60%
of the time for developing the SW. Although these distribu-
tions might vary for different designs, they already indicate
the necessity of a cosynthesis design approach. The HW
design is just one part of the system. Especially if high-per-
formance systems with a high degree of pipelining and
instruction level parallelism are considered, the SW devel-
opment on an assembler level can become extremely cum-
bersome. Therefore cosynthesis tools are required which
synthesize both the processor HW and the compiler to gen-
erate SW for the designed processor.

Another important point is the conception phase. This
phase requires a detailed knowledge of the application
domain and the creativity and intuition of a designer. For
example, a typical trade-off in video processing systems
exists between flexibility and performance. In most cases
specialized systems offer higher performance than flexible
systems of the same size, but also have a limited applica-
tion domain and hence a smaller market segment. The most
suitable design point will be in the range between an off-
the-shelf microprocessor and a function-specific ASIC
[22]; i.e., an application-oriented processor. Specifying the
design point should be done by the designer since, for
example, future market developments must be anticipated,
etc. Hence, decisions in the conception phase are not
always clear cut and difficult, if not impossible, to auto-
mate. But these design decisions should be based on quanti-
tative data [16]{32]. The synthesis tool must provide a
comfortable environment to measure and visualize these
data, in order to support the designer as much as possible in
specifying the system structure.

The paper describes the major steps of a cosynthesis design
flow and the implementation of this design flow in the
CASTLE system. The design of an embedded video com-
pression system is used to illustrate the design flow. The
remainder of the paper is organized as follows. The next
section summarizes related work from the synthesis and the
video processing domain. Section 2 presents an overview of
the design flow for high-performance systems (HPS) in
CASTLE. Section 3 describes the architecture of an embed-
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ded video compression system. Section 4 describes the
cosynthesis environment. The main implementation results
are given in section 5.

1.1  Related Work

This section briefly reviews recent work in the field of syn-
thesis and the field of video processing. Significant
progress was achieved in both fields. Therefore it is chal-
lenging to combine these fields and to use the video pro-
cessing applications as an example for synthesis. The USC
system [13] was used for synthesizing a dedicated JPEG
video compression system from a system-level specifica-
tion. The synthesis results obtained by the system-level
synthesis were comparable to results obtained by RT-level
synthesis.

A VLIW (Very Long Instruction Word) processor architec-
ture is used as the synthesis framework in the CAPSYS[24]
and the CATHEDRAL?2/3 [12] systems. The opcode in case
of the CAPSYS system is generated from programs written
in an Ada-like language, whereas the CATHEDRAL2/3
currently uses Silage as specification language.

The PEAS-1 [2] system generates a compiler based on the
GNU C compiler along with the hardware. But currently
only a scalar, RISC-like processor architecture is supported.
The CODES [4] system supports concurrent design of hard-
ware and software. Emphasis is put on formal specification
and on the configuration of the system from off-the-shelf
components, similar to the approach used in MICON [3].
COSMOS (20} also stresses formal specification and, simi-
lar to the CASTLE system, standard input and output lan-
guages are used. VULCAN (14] and COSYMA [8] focus
on automatic partitioning between tasks for a general-pur-
pose processor and an ASIC. The cosynthesis described in
this paper extends this approach by considering the spec-
trum of more or less application-oriented architectures in
between general-purpose microprocessors and ASICs.

Ptolemy [21] offers a heterogeneous codesign environment.
The system is written in C++ and uses an object-oriented
mechanism for abstracting communication among different
tools. This approach allows to integrate external tools into
the design environment.

The first generation of video processing chips were based
on ASICs [9][27] synthesized from RT level HW descrip-
tions. Currently, these dedicated systems are offered as
macro cells by some ASIC vendors (e.g., LSI Logic offers a
JPEG cell). As a disadvantage of dedicated architectures, a
major redesign of the chips is required, if any changes in
the video processing algorithms occur.

Therefore the current generation of video processing chips
uses flexible processor architectures which are adapted to
video processing [1]{15][30]. An open problem in most
cases is the compiler support for these complex and heavily
pipelined processors.

2.0 Overview of the CASTLE Design

Flow for High-Performance Sys-
tems

The CASTLE [6][32] system is a workbench for HW/SW
codesign. All tools in CASTLE are connected by a SIR
(System Intermediate Representation) format. The tools in
CASTLE can be configured to form design flows for spe-
cific application domains. This paper presents a design flow
for High-Performance Systems (HPS) such as the video
compression system discussed in the next section.

A VLIW (Very Long Instruction Word) processor architec-
ture is used as the framework for a cosynthesis of processor
HW and corresponding compiler. The generic architecture
is shown in Fig. 1.

The processor can be subdivided into a control unit and a
datapath. The datapath consists of a number of functional
units (e.g., adder, ALUs, multiplier) and storage units like
register, register files, etc. These units are connected by
multiplexers and busses. The operation of the datapath is
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Fig. 1 Generic structure of a VLIW processor.
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Fig. 2 Cosynthesis of application-oriented VLIW-Processors.

controlled by a control signal which corresponds directly to
the instruction word of the VLIW processor. Flags of the
functional units (e.g., carry out, etc.) can influence the con-
trol flow (i.e., branches can depend on a certain flag value).
This generic architecture is similar to the typical architec-
ture used in High-Level Synthesis (HLS) [Sl(e.g., the
FSMDs in [10]), except that the control unit is kept pro-
grammable, whereas in HLS the control unit is typically
hardwired into an FSM.

The design flow used for the cosynthesis of HPSs in CAS-
TLE is depicted in Fig. 2. The following main steps are per-
formed:

(i) One or more programs from the considered application
domain are developed in a high-level language (C, C++, For-
tran) on a workstation or PC. The conventional program-
ming environment can be used for debugging and testing of
the program(s). This offers a significant advantage concem-
ing the design time, since for example a functional *“simula-
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tion” of the application program can be done by simply
executing the program on the workstation (this is currently
about 30 times faster than simulating an equivalent VHDL
or Verilog program). Furthermore, existing software, like the
mpeg_play [26] program, can be used as application pro-
grams. Again, this can significantly reduce the design time
when developing complex ESs.

(ii) The application program is compiled into a sequential inter-
mediate code which consists of RISC-like 3-operand instruc-
tions. The compilation is handled by the MOVE compiler
(which is based on the GNU compilers). The MOVE com-
piler was developed by J. Hoogerbrugge, et al. at the Univer-
sity of Delft [17].

(iii) A requirement analysis [32] is performed by simulating the
3-operand code with representative data files (e.g., different
MPEG sequences in case of the mpeg_play). The execution
profiles are recorded and the corresponding analysis data are
visualized by the SIR/CASTLE Analysis Environment.
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Fig. 3 Blockdiagram of the Compression Processor (CP).

(iv) The designer interprets these data and specifies the main pro-
cessor structure.

(v) The SIR/CASTLE Schematic Entry is used to enter the spec-
ified processor on a block diagram level into the synthesis
tool. The schematic is translated into synthesizable VHDL.
The VHDL-description of the processor can be synthesized
by any commercial synthesis tool (e.g., Synopsys’ Design
Compiler). Additionally, a compiler back-end is generated
for the specified processor. The back-end allows to translate
the sequential 3-operand code into a binary code for the pro-
cessor. This opcode and the VHDL-hardware description of
the processor can be used for a cosimulation on a conven-
tional VHDL-simulator. The cosimulation results allow to
validate the design by comparing these results with the
results obtained from executing the application program on a
workstation and from simulating the sequential 3-operand
code.

The processor synthesis is discussed in more detail in sec-
tion 4.0. The next section gives a brief description of the
video compression system to be designed.

3.0 Embedded Video Compression

System

Handling real-time video data in a computer system poses
extreme demands on the storage capacity and the data
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transfer bandwidth. Sophisticated video compression
schemes like MPEG [11][19] can be used to reduce these
demands. Typically, the compression schemes require high
processing power which makes application-oriented video
processors necessary. This section describes a video com-
pression system which is embedded into the video card of a
PC.

A typical decoding sequence would proceed as follows:
The PC retrieves the coded video data from a file or from a
network. The data are transferred to the compression pro-
cessor (CP) which decodes the data, and finally the decoded
picture is written into the video buffer of the PC. The next
section explains the architecture of the video compression
system in more detail.

31

The toplevel block diagram of the compression system is
shown in Fig. 3. The compression system consists of three
main components:

®

System Architecture

The video data processor performs the processing of the
compression algorithms. The processor uses a direct mapped
cache for both data and instructions.

(i) The memory controller performs all address calculations and
data transfers in the system. In addition, simple low level

tasks, like filtering, decimation, and interpolation, can be



performed on the video input and output data.
From the SW point of view the memory controller imple-
ments an OS function similar to a small micro kemel for
memory management. Four threads of control can be distin-
guished: loading of the data cache, interpolation and output
of the video data, input and decimation of the video data, and
arbitration between PC-memory access and the instruction
fetch. From the HW point of view the memory controller can
be realized as a second VLIW processor with special func-
tional units for address calculation.
This system structure allows to overlap communication per-
formed by the memory controller and data processing per-
formed by the video data processor.
(iii) The memory of the compression system is subdivided into
two banks. A homogeneous address space with high-order
interleaving is used; i.e., the MSB of the address determines
which bank is accessed. Typically, bank #0 will be used by
the compression processor and bank #1 will be used by the
instruction fetch and for communication with the PC.
The SIR/CASTLE Analysis Environment and the require-
ment analysis of the mpeg_play [26] program are presented
in [32]. The next section describes the cosynthesis of a pro-
cessor which matches these requirements.

4.0

The basic VLIW architecture framework was presented in
section 2.0. The main parts to be defined for the datapath
are: the number and type of the functional units and the
interconnection between these units. From the requirement
analysis [32] the designer knows the number and the type
of operations in the application programs and the number of
data transfers between these operations. Based on these
results, the designer can specify the most suitable processor
structure. This step requires to consider future market
developments, to trade-off flexibility and performance in
order to obtain a good performance/cost ratio, and so on. As
a result of this step, the designer will have a block diagram
of the processor datapath in mind. Using the SIR/‘CASTLE
Schematic Entry, the designer can directly enter this block
diagram into the CASTLE system. That is, the Schematic
Entry presents the designer a list of available processor
components, the designer selects the component types (e.g.,
register file and adder for the simple example processor of
Fig. 4), specifies a name for each unit instance, and deter-
mines certain generic values (e.g., the number of words in
the register files). Next, the designer specifies the connec-
tions between the units by clicking on the unit ports to be
connected. The system inserts the connection and multi-
plexers or register, if necessary. The resulting block dia-
gram for a simple example processor is depicted in Fig. 4.
This block diagram is translated into a synthesizable VHDL
description, as described in the next section.

Processor Cosynthesis
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Fig. 4 Simple example processor datapath.

4.1

The synthesis in the HPS design flow is based on a VHDL
library of generic components. The concept is similar to
Synopsys’ Design Ware [7] approach. Each component in
the library defines a complete class of units (e.g., a register
file with two generics: wordwidth and number of words in
the file). Upon instantiation, the generics are fixed and a
specific unit type is inserted into the netlist.

The library can be subdivided into two parts. A VHDL-
component package which declares the interface of each
library component, and a VHDL-entity/architecture file
which describes the internal realization of each component.
The VHDL-entity/architecture file is only used for the final
HW synthesis. Hence, the component library can be
adapted to different synthesis tools (e.g., Synopsys’ Design
Compiler, Mentor’s Autologic, etc.) by simply changing the
VHDL-entity/architecture file. Furthermore, full-custom
macros can be used for demanding components. Due to the
separation between VHDL-component package and
VHDL-entity/architecture file, low-level optimizations of
the implementation can be performed, without effecting the
HW description generated by the CASTLE system.

The structure of the CASTLE Schematic Entry is shown in
Fig. 5. The program is written in irc/ [23] an object-oriented
variant of the Tcl/Tk language [25].

The VHDL-component package is translated by a library
compiler into a Tcl script. When the Tcl script is executed
by the circuit manager, two data structures are created for
each component: a schematic template and a netlist tem-
plate. The schematic template contains the data ports and

Hardware Synthesis



the schematic symbol to be used when the component is
displayed by the Schematic Entry.

The netlist template contains all ports of the component and
the information necessary for creating a netlist instance of
that component. The ports in the netlist template are subdi-
vided into five groups: (i) dataln, (ii) dataOut, (iii) control,
(iv) flags, and (v) broadcastln. The connections for dataln
and dataOut are specified by the designer. All other ports
are hidden from the designer and connected automatically
by the circuit manager. The port groups control and flags
are concatenated and connected to the control unit of the
processor. The port group broadcastin contains signals like
clock and reset which are passed to the toplevel of the pro-
Cessor.

A typical processor synthesis is performed as follows. The
user enters the block diagram of the processor as a sche-
matic. This specification is very abstract since the circuit
manager ‘“knows” the processor architecture (a VLIW
architecture in the current implementation), and hence,
most details of the implementation can be handled automat-
ically by the circuit manager. Next, the circuit manager cal-
culates all generics and creates a SIRNetlist of the
schematic based on the netlist templates from the compo-
nent library. The SIRNetlist can be dumped as synthesiza-
ble VHDL code.

4.2 Compiler Back-End Generation

The generation of a compiler back-end can be subdivided
into two main steps:

(1) A mach script is generated. The script informs the scheduler
of the MOVE system about the processor topology; i.e., it
specifies the number and type of the functional units and the
interconnection structure between these units. This allows
the MOVE scheduler to perform the scheduling and alloca-
tion of the sequential assembler code. As a result, a parallel
assembler code is generated where each instruction is anno-
tated with the functional unit which executes this instruction.

libComp

(ii) The parallel assembler code is translated into the binary
opcode for the processor. In a VLIW processor the instruc-
tion word directly corresponds to the control vector of the
hardware. As an example, the instruction word for the sim-
ple processor of Fig. 4 and the encoding of an assembler

instruction is depicted in Fig. 6.

Assembler Instruction:

ri->add_t r9->add o add r->r0

Binary Encoding of the
Assembler Instruction

Instruction Word:

181716 15 14]13 11|10 8] 7|6 4|3 1] o
01{01{0{001|010| 1|/ 001| 000| O

) £
gle| |8 |83 8|43
o D << < [55) < < |
al2l=| B £ |E|l 3| & 2
elglol g Lz gy &1 5 13

Adder RF1 RF2

Fig. 6 Encoding of an addition into the instruction word for

the example processor of Fig. 4. It is assumed that the reg-

isters 10 ... r7 are in RF1 and the registers 18 ... r15 are in
RF2,

The next section summarizes the main implementation
results.

5.0

The CASTLE system was used to synthesize several differ-
ent processor datapaths for the video compression system.
All datapaths correspond to the principal analysis results of
[32], but different degrees of flexibility were used when
selecting the types of the functional units and the intercon-
nection network. This illustrates the trade-off between flex-
ibility and performance in the design of high-performance
ESs.

Results

Window
Manager

Processor
Schematic

Circuit

chematic
Manager

Templates

L

Generator

SIRNetlist

Fig. § Structure of the schematic entry in CASTLE.
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The synthesis results obtained from synthesizing the VHDL

processor descnp}xons with the Sypopsys Design Compiler Processor Compo- | Para- | Number of | Control | Gate-
and the LSI 10k library are shown in Table 1.,and Table 2. nents meters | Instances | Bits | count
ALU2 1 14 3035
Processor Compo- | Para- | Number of | Control | Gate- _CompareType
nents meters | Instances Bits count ALU_Type 1 5 1274
ALU_Type 1 5 1274 AddSubType 1 2 1601
AddSubType 1 2 1601 AdderType 1 1 535
AdderType 3 3 1605 MPY_ShifterType | 4 stages 1 5 13602
CompareType 1 4 487 MuxType 2101 12 12 1536
MPY_Type 3 stages 1 0 12617 MuxType 4to1 8 16 327
MuxType 2t01 4 4 512 RegFileR2W 1 Type | 2read 1 7 2151
MuxType 4to1 2 4 754 port,
RegFileR2W1Type | 2read 2 14 | 4302 1 write
port, port,
1 write 4 words
port, RegFileR2W 1 Type | 2read 3 30 11475
4 words port,
RegFileR2W 1 Type | 2read 1 10 | 3825 I write
port, port,
1 write 8 words
port, ShifterRotate Type 1 6 1156
8 words Processor2 98 36692
Registe 3 3 963 .
egisterType Table 2. Synthesis results for the Processor2.
ShifterType 1 5 985
TransferType 1 4 679
Processorl 58 29604

Table 1. Synthesis results for the Processorl.

The program sizes of utilized CASTLE programs are sum-
marized in Table 3. The user interface of the schematic
entry is shown in Fig. 7.

Program Language Lines of Code
Analysis Environ- C++ 3344
ment Other 368
Schematic Entry itcl 3836
libComp GAWK 723
Library Component VHDL 306
Package Fig. 7 User interface of the schematic entry in
Library entity/archi- VHDL 1637 CASTLE.
tecture file
Library Testbenches VHDL 1825 6.0 Conclusion

Table 3. Code si f diffe ASTLE . . .
able 3. Code sizes of different C programs The CASTLE design flow for high-performance systems

was presented. Application-oriented VLIW (Very Long
Instruction Word) processors are used as the basic architec-
ture framework of the design flow. The design flow pro-
duces both, a synthesizable VHDL description of the
hardware and a C, C++, Fortran compiler for the specified
Processor.
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This approach improves the design efficiency significantly
since application programs can be developed in high-level
languages and existing software can be reused. Further-
more, the application programs can be directly tested on a
workstation or PC which is much faster than simulation of a
complex ES in VHDL or Verilog. The hardware is config-
ured in terms of a VHDL library of complex processor
components. The library is subdivided into two parts, a
VHDL-component package which defines the interfaces of
each component, and a VHDL-entity/architecture file
which defines the implementation of each component. This
allows to perform low level optimizations of the compo-
nents without effecting the over-all processor structure. In
addition, user defined components can be appended to the
library. This supports a reuse of hardware components from
existing designs. The described cosynthesis design flow
was used for the design of an embedded video compression
system.
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