Holistic Scheduling and Analysis of Mixed Time/Event-
Triggered Distributed Embedded Systems

Traian Pop, Petru Eles, Zebo Peng
Department of Computer and Information Science, Linkdping University, Sweden
{trapo,petel,zebpel}@ida.liu.se

Abstract

This paper deals with specific issues related to the design of
distributed embedded systems implemented with mixed, event-
triggered and time-triggered 1ask sets, which communicate over bus
protocols consisting of both static and dynamic phases. Such
systems are emerging as the new standard for automotive
applications. We have developed a holistic timing analysis and
scheduling approach for this category of systems. We have also
identified several new design problems characteristic to such hybrid
systerns. An exampie related o bus access optimization in the context
of @ mixed static/dynamic bis protocol is presented. Experimenial
results prove the efficiency of such an optimization approach.

1. Introduction

Embedded systems very often have to satisfy strict timing
requirernents. In the case of such hard real-time applications, pre-
dictability of the tirning behavior is an exiremely imponant
aspect. Frequently such applications are implemented as distrib-
uted systems. This is the case, for example, with many applica-
tions in the automotive industry. Predictability of such a system
has to be puaranteed globally, considering both the task sched-
ules determined for the particular processing units as well as the
timing of the communication between different components of
the systermn.

Task scheduling and schedulability analysis has been inten-
sively studied for the past decades. The reader is referred to
£21,(3] for surveys on this topic.

A few approaches have been proposed for 2 holistic schedula-
bility analysis of distributed real-time systems, taking into con-
sideration both task and communication scheduling. In {16},
Tindell provided 2 framework for holistic analysts of event-trig-
gered task sets interconnected through an infrastructure based on
either the CAN protocol or a generic TDMA protocol. In [13] and
[14] we have developed a holistic analysis allowing for either
time-triggered or event-triggered task sets communicating over a
particular TOMA protocol, the TTP. In addition to schedulability
analysis. this work has also addressed the optimization of the TTP
based bus configuration in order to Bt the particular application.

Two basic approaches for handling tasks in real-time applice-
tions can be identified [9]. In the event-triggered (ET) approach,
task activitias are initiated whenever a particular eveni is noted.
In the time-triggered (TT) approach, task activities are initiated
at predetermined points in time. There has been a long debate in
the real-time and embedded systems communities concerning the
advantages of each approach and which one to prefer [1}, {9],
[18]. Several aspects have been considered in favour of one or the

Permission 10 make digitzl or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistnibute to lists,
requives priot specific permission and/or a fee.

CODES'02. May 6-8, 2002, Estes Park, Colorado, USA.

Capyright 2002 ACM 1-58113-542-4/02/0005...35.00.

other approach, such as flexibility, predictability, jitter control,
processor utilization, testability, eic.

The same duality is reflected at the level of the communication
infrastructure, where communication activities can be triggered
either dynarnicaily, in response o an evem (like with the CAN
bus [4]), or statically, at predetermined moments in time (as in the
case of TDMA protocols and, in particular, the TTP [9]).

An interesting comparison of the TT and ET approaches, from
a more industrial, in particular automotive, perspective, can be
found in [10]. Their conciusion is that one has to choose the right
approach depending on the particularities of the scheduled tasks.
This means rot cnly that there is no single “best” approach to be
used, but also that inside a certain application the two approaches
can be used together, some tasks being time-triggered and others
event-triggered.

The fact that such an approach is considered for future auto-
motive applications is also indicated by the recent activities
selated 1o the development and standardisation of bus protocels
which support both static (ST) and dynamic (DYN} communica-
tion. Such a protocol has been suggested in [12] and [i5].
Recenily, the first mixed protocol has been proposed by a consor-
tium, to be used in automotive applications [8]. In [€], the authors
describe the so called Universal Communication Model (UCM),
a framework for modelling 21 2 high level of abstraction the com-
munication infrastructure in automotive applications. Their
approach is 1argeted towards simulation and refinement without
considering the aspeet of 1iming analysis with hard real-time con-
straints.

Efficient implementation of new, highly compiex distributed
amornotive applicalions entails the use of TT task sets iogether
with ET ones, implemented on top of a communication infra-
struciure with a mixed ST/DYN protocol. Given its flexibility,
such an approach has the potemial of highly efficient, fine-tuned,
and optimised implementations.

Our main contribution in this paper is related to the scheduling
and schedulability analysis of distributed embedded systems
implemented with both ET and TT task sets, which are commu-
nicating through mixed ST/DYN bus protocols. Such an analysis
and scheduling procedure constitutes the fundament for any syn-
thesis approach aiming at an efficient, highly optimised imple-
mentation of a distributed application which is also guaranteed to
meet the timing constraints.

We also identified several design problems which offer the
potential of significant optimization and which can be solved by
efficient design space exploration, based on the timing analysis
mentioned above. In order to illustrate the potential of such opti-
mizations, we have locked more closely at one particular com-
munication synthesis problem.

This paper is the first one, to our knowledge, to handle the
holistic analysis and the design optimization of helerogeneous
TT&ET systems which are of great importance for future auto-
motive applicaiions.

In the next section we present the architecture of the distrib-
uted systems and the application model that we are studying. Sec-
tion 3 describes the holistic scheduling and schedulability
analysis we have developed. Some specific optimization issues
are presenied in Section 4. Section 5 describes a particular opti-
mization problem related to the bus access, while Section 6

187

presents some experimental results. The last section presents our
conclusions.

2. System Architecture and Application Model

2.1 Hardware Architecture

We consider architectures consisting of nodes connected by a
unique broadcast communication channel. Each node consists of
a communication coniroller, a CPU, memories (RAM, ROM),
and an 1O interface to sensors and actuators (see Figure 1).

We model the bus access scheme using the Universal Commu-
nication Mode! {6). The bus access s organized as consecutive
cycles, each with the duration T,,;. We consider that the commu-
nication cycle is partitioned into static and dynamic phases
(Figure 1). Static phases consist of time siots, and during a slot
only one node is allowed to send ST messages; this is the node
associated to that particular slot. During a dynamic phase, all
nodes are aliowed to send DYN messages and the conflicts
berween nodes trying to send simultaneously are solved by an
arbitration mechanism based on priorities assigned to messages.

Node 1 Node 2 Node 3 10
CPU |r
ROM|
communisation l
controller
Bus access cycie or Round (Tyue)
Static phase nami¢ phase Static phase _ Dynamic phase
=[] & - 3\ E
gl e g |[8]|2 £1g |2|E| (&g

Figure 1. System Architecture

The bus access cycle has the same structure during each period
Tpus- Every node has a communication controller that imple-
ments the static and dynamic protocol services. The controtler
runs independently of the node’s CPU.

2.2 Software Architecture

For the systems we are studying, we have designed a software
architecture which runs on the CPU of each.node. The main com-
ponent of the software architecture is a real-time kermnel which
supports both time-triggered and event-triggered activities. An
activity is defined as either the execution of a task or as the trans-
mission of 2 message on the bus. For the ST activities, the kernel
relies on a static schedule table which contains all the informa-
tion needed 1o take decisions on activation of TT tasks or trans-
mission of TT messages. For the ET tasks, the kernel maintains a
prioritized ready queue in which tasks are placed whenever their
triggering event has occurred and they are ready for activation. or
when they have been pre-empted.

The real-time kernel will always activate a TT task at the par-
ticular time fixed for that task in the schedule table. if at that
moment, an ET task is running on that node, that task will be pre-
empted and placed into the ready queue according to its priority.
If no tasks are active, ET tasks are extracted from the ready queue
and are (reYactivated. ET tasks can pre-empt each other based on
their priority.

The wansmission of messages is handled in a similar way: for
each node, the sending and receiving times of ST messages are
stored in the schedule table; the DYN messages are organized in
a prioritized ready queue. ST messages will be placed at prede-
termined time moments into a bus slot assigned to the sending
node. DYN messages can be potentially sent during any dynamic
phase and conflicts are solved by the communication controllers
based on message priorities. In order to prevent the delay of an

ST message by a DYN frame or the retransmission of a pre-
empted DYN message, the DYN messages will be sent only if
there is enough time available for that message before the
dynamic phase ends.

TT activities are triggered based on a local clock available in
each processing node. The synchronization of local clocks
throughout the system is provided by the communication protecol.

2.3 Application Model

We model an application as a set of task graphs. Nodes repre-
sent tasks and arcs represent communication (and implicitly
dependency) berween the copnected tasks. Each task is mapped
on a certain node of the distributed application.

* A task belongs either to the TT or to the ET domain.

+ Communication between tasks mapped to different nodes is
prefarmed by message passing over the bus. Such a2 mes-
sage passing is modelled as a communication task inserted
on the arc connecting the sender and the receiver tasks. The
communication time between tasks mapped on the same
node is considered (0 be part of the task execution time.
Thus, such a communication activity is not modelied explic-
itly. For the rest of the paper, when referring to messages
we consider only the communication activity over the bus.

* A message belongs either to the static (5T) or the dynamic
(DYN) domain.

* Alltasks in a certain task graph belong to the same domain,
either ET, or TT, which is called the domain of the task
graph. However, the messages belonging to a certain task
graph can belong to any domain (ST or DYN). Thus, in the
most general case, tasks bejonging to a TT graph, for exam-
ple, can communicate through both ST and DYN messages.

* Each task 1;; (belonging 10 the task graph TI';) is mapped on
processor Procy, has a worst case execution time Cy;, 2
period Ty;. and a deadline Dy (which. in the case of ET
tasks, can be longer than the period). Each ET task also has
= uniquely assigned prierity Prio;;.

* All tasks T; belonging to a task graph [; have the same
period T; which is the period of the task graph.

= Por each message we know its size (which can be directly
converted into communication time on the particular com-
munication bus). The period of a message is identical with
that of the sender task. DYN messages also have an
uniquely assigned priority.

Figure 2 shows an application modelled as two task graphs
mapped on two nodes.

In order 10 keep the separation between the TT and ET
domains, which are based on fundamentally different tiggening
policies, communication between tasks in the two domains is not
inclyded in the model. Technically, such a communication is
implemented by the kemel, based on asynchronous non-blocking
send and receive primitives (using proxy tasks if the sender and
receiver are on different nodes). The transmission and reception

I"I:'[T

I 2:ET

Tasks:
ElNode): 711, Ty 3, Ta1
CiNodes: 112, Tr 4 T220 T23

Ty Messages:
ST: 1‘1'5, 12‘4
DYN: Tis T2s

Figure 2. Application Model Example

188

of such a message are not considered as communication tasks or
respectively events in the context described by our model, there-
fore they are outside the scope of our holistic analysis. Such mes-
sages are typically nen-critical and are not affected by hard real-
time constraints.

3. Holistic Scheduling

Given an application and a system architecture as presented in
Section 2, the following prablem has to be solved: construct a
correct statc schedule for the TT tasks and ST messages (a
schedule which meets all time consiraints related to these activi-
ties) and conduct a schedulability analysis in order to check that
all ET tasks meet their deadlines. Two imponant aspects should
be noticed:

1. When performing the schedulability analysis for the ET

tasks and DYN messages. one has to take into considera-
tion the inte. ference from the statically scheduled TT tasks
and ST messages.
Among the possible correc. szharnles for TT tasks and ST
messages, it is important to construct one which favours, .-
much as possible, the schedulability of ET tasks and DYN
messages.

In Section 3.1 we present the schedulability analysis for a set

of ET tasks and DYN messages, considering a fixed given static

schedule of TT tasks and ST messages. In Section 3.2 we discuss
the construction of the static schedule which is driven by the
objective of achieving global schedulability of the system. In
order to keep the presentation reasonably simple and given the
space limitations, we present here the analysis for a restricted
model, in the sense that TT tasks are communicating only
through ST messages, while the communication between ET

tasks is only through DYN messages. This is not an inherent lim-

itation of our approach and the analysis we have developed and

implemented supports the general model (in [14), for example,
we have presented an approach to schedulability analysis of ET
tasks communicating through ST messages).

3.1 Schedulability analysis of the ET sub-system
considering the influence of a given static
schedule

An ET task graph T; is activated by an associated event which
occurs with a period T;. Each activity 7;; (task or message) in an
ET task graph has an offset ¢,; which specifies the earliest activa-
tion time of 1;; relative to the occurrence of the triggering event.
The delay between the earliest possible activation time of 7;; and
its actual activation time is moedelled as a jitter J;; (Figure 3.a).
Offsets and jitters are the means by which depenc{enc:cs among
tasks are modelled for the schedulability analysis. The response
time Ry; of an activity T; is the time measured from the occur-
rence of the associated event until the completion of 1. Each ET

9

T
T.. '’
] ¢i_| ij T'ij-ﬂ ¢l_| Ji' T Tin
t1:"134-1 ¢ij+l Jij+l
a) Tasks with offsets
Ry]
0

ICJI:._‘Ei;. e wy
Ry =wy+d,-9,-(p-1)T,
b) Response time and busy period w for task 7;;
Figure 3. Model of the event-triggered sub-system

activity T; has a best case response time Ry, ;. The worst case
response ume R; of an activity 7;; occurs when Ty is released at
the same time mornent t- together wn.h all possnb]e hxgher prigrity

activities on Procy; [1 1] The moment 1, is called critical instant
and it represents the starting point of the busy window w;, a time
imerval which ends when 1 finishes execution (Figure 3 {)) Dur-
ing the busy window Wi processor Pmc,_, executes only task Ty
or higher priority tasks. cp,J is the time interval between the criti-
cal instant and the earliest time for the first activation of the task
after this instant.

Considering a set of data dependent ET tasks mapped on a sin-
gle processor, the amalysis in [11] computes the worst case
response time Ry of a task T based on the length of its busy
peried, con51denng all the critical instants initiated by higher pri-
ority activities Ty in I'; and all job instances p of T;; which can
appear in the busy wmdow Wyt
R = maximax(w; (p)- @ - (p—- DT, +d,)],
Yk|Prioy > Prioy, ¥p

where w;(p) is the worst-case busy window of the p-th job of
T;;. numbered from the critical instant 1, initiated by ;.

The value of w,;(p) is determined as follows:

wialp) = Bn‘j +Hp=py e+ 1) C.‘j + Wty win(p))+

%
2 Wa (T,'j, W,jk(P)))
Y(a#i)

where, Bj; represents the maximum mterval dunng which 1;; can
be blocked by lower priority activities', Wil Tijt) is the mterfer-
ence from hlgher pnomy activities in the same task graph T'; at
ume f, and W,,{‘r,j,r) is the maximum nterference of activitjes
from other task graphs I', on T One problem that arises during
the computation of response umes is that the length of the busy
window depends on the values of task jitters, which in tum are
comnputed as the difference between the response times of two
successive tasks (for example, if 1;; precedes 7 in I';, then Jy =
1.i7)- Becanse of this cyclic dependency, the process of com-
punn g "5, i is an iterative one: it starts by assigning R, ; R and
then computes the values for J;; w;{p) and then again R,J, “until

the response limes converge to their final vake.

Starting from the analysis in [11], we had 1o consider the fol-
lowing additional aspects:
¢ The interference from the set of statically scheduled tasks.
¢ The computation of worst case delays for the messages

communicated on the bus and the giobal scheduiability
analysis of the distributed task set.

First we introduce the notion of £T demand associated with an
ET acuvity 7, as the amount of CPU time or bus time which is
demanded onfy by higher priority ET activities and by 1;; ; during
the busy window wy. In Figure 4, the ET demand of the task T;;
during the busy window wy; is represented with Hyf{w,), and it is
the sum of worst case execution times for task 1;; and two other
higher priority tasks 1, and t.;. During the same f)usy penod Wy
we define the availability as the processing time which is not
used by statically scheduled activities. In Figure 4, the CPU avail-
ability for the interval of length wy i5 obtained by substracting
from w; i i the amount of processing ume needed for the TT activities.

During a busy window wy;, the ET demand Hy of a task T; 18
equal with the length of lhe busy window WhJCh would result
when considering only ET activity on the system:

H,‘,‘(W.'j) = ij”*(P—Po,,'jk"' 1) C‘.}-+

*
Wt w) + 2 W (T ;)
Y(azi)

1. Such blocking can occur at access to a shared critical resource.

189

During the same busy window wy;, the availability A;; associ-
ated with task Ty is:

LCM(T,T

Aylwy) = min[AZ.(w‘.j)], g=0, __‘T,'i)
where A",-J(w) is the total available CPU-time on Procy in the
interval {g T; + 0y~ @i, @ T + & = Oy + wy), T is the period of
T'; and Tg is the period of the static schedule (see Section 3.2).
Figure 4 presents how Aq,}{w) and the demand are computed for
atask 1, the busy window of T;; starts at the critical instant g T;
+ I initiated by task T, and ends at moment gT; + 1, + wy;, when
both higher priority tasks (T, T4, all TT tasks scheduled for
execution in the analysed interval, and T, have finished execution.

The discussion above is, in principle, valid for both ET tasks
and ST messages. However, there exist two important differ-
ences, First, messages do not pre-empt each other, therefore, the
demand equation is rmedified so that it will not consider the time
needed for the transmission of the message under analysis (once
the message has gained the bus it will be sent without any inter-
ference {12}). Second, the availability for a message is computed
by substracting from wy; the length of the ST slots which appear
during the considered interval; moreover, because a DYN mes-
sage will not be sent unless there is enough time before the cur-
rent dynamic phase ends, the availability is further decreased
with C, for each dynamic phase in the busy window {where C,
is the transmission time of the longest DY N message).

Cur schedulability analysis algorithm determines the length of
abusy window w; for an ET task or DYN message by identifying
the appropriate size of wy; for which the ET demand is satisfied
by the availability: Hu{w,-j) < Ay{wy). This procedure for the cal-
culation of the busy window is included in the iterative process
for calculation of response times, presented earlier in this subsec-
tion. kt is important to notice that this process includes both tasks
and messages and, thus, the resulted response times of the ET
tasks are computed by taking into consideration the delay
induced by the bus communication.

After performing the schedulability analysis, we ¢an check if
Ry < Dy for all the ET tasks. If this is the case, the set of ET activ-
ities is schedulable. In order to drive the giebal scheduling proc-
ess, as it will be explained in the next section, it is not sufficient
to test if the task set is schedulable or not, but we need a metric
that captures the “degree of schedulability” of the task set. For
this purpose we use a cost function similar with the one described
in [14]:

fi= max(O,RU—DU),iffJ->0

-
-

=z M=

Cost=

f2

H

uMz [N o K

(Ry=D;).iff;=0

=
n

where N is the number of ET task graphs and ¥; is the number
of activities in the ET task graph I';

If the task set is not schedulable, there exists at least one task
for which R;; > Dy;. In this case. f; > 0 and the cost function is a
metric of how far we are from achieving schedulability. If the set
of ET tasks is schedulable, f; <0 is used as a metric. A value f;
= () means that the task set is “just” schedulable. A smaller value
for f; means that the ET tasks are schedulable and a cenain
amount of processing capacity is still available.

Now, that we are able to perform the schedulability analysis
for the ET tasks considering the influence from a given static

R = W+¢fj“05j—(P‘l)Tf

2

Cah l: %

i <
qT; el @y, D

=

ET availability: A‘?U(wil=wy - T,
ET demand: Hyfwy) = Cjj+ Cop + Coy
Figure 4. Availability and Demand

interval {t., t.+w] {

schedule of TT 1asks, we can go on to perform the global sched-
uling and analysis of the whole application.

3.2 Static schedule construction and holistic
analysis

For the construction of the cyclic static schedule for TT tasks
and ST messages, we use a list-scheduling based algorithm [5).
Assuming that in our application we have N time-triggered task
graphs Ty, [y, ..., [, the static schedule will be computed overa
period Tgg = LCM(T}, T3, ..., Ty). The input to the list scheduling
algorithm is a graph consisting of n; instances of each I';, where
n=Tsy/T;. A ready list contains all TT tasks and ST messages
which are ready 10 be scheduled (they have no predecessors or all
their predecessors have been scheduled). From the ready list,
tasks and messages are extracted ene by one 10 be scheduled on
the processor they are mapped 1o, respectively into a static bus-
slot associated to that processor on which the sender of the mes-
sage is executed. The priority function which is used to select
among ready tasks and messages is a critical path metric, modi-
fied for the particular goal of scheduling tasks mapped on distrib-
uted systems [13]. Let us consider a particular task T; selected
from the ready list to be scheduled. 8; is the earliest time moment
which satisfies the condition that all preceding activities (lasks or
messages) of T;; in graph I'; are finished and the processor Procy
is free. 95 = ALAP(‘:,-J-) is the latest time when Ty can be sched-
uled. With only the TT tasks in the system, the straight forward
solution would be 1o schedule T, at 0;. In our case, however, such
a solution could have negative effects on the schedulability of ET
tasks. What we have 1o do is to place T; in such a position inside
the interval [, 6] that the chance to finally get a globally sched-
ulable system is maximised.

In order to find the right position for T;;, we try k different
alternatives:

8, -6,

k-1

For each altemnative we perform the schedulability analysis of
the ET task set considering the influence from those TT tasks
which are already scheduled. We will select that start time for T;
which produces the minimum value for Cost (see Section 3.1).

When scheduling an ST message extracted from the ready list,
we place it into the first bus-slot associated with the sender node
in which there is sufficient space available.

" Ifall TT tasks and ST messages have been scheduled and the

schedulability analysis for the ET tasks indicates Cost £ 0, the

global system scheduling has succeeded.

There are two aspects to be mentioned:

1. How large should be the number & of altemnatives to be tried
for the placement of a task 7,7 If k is large, we will increase
the chance to generate a schedulable system, however the
execution time for the scheduling algorithm could become

stan_time(-rl.j) =+ xx, x=0,.,k=1

190

static phase dynamic| . Static phase dynamic
‘ slot, sl | phase | siol, swoy 1 phase
a} Initial bus cycle
[Cycley . Cyclez '
' unused + unused '

EE T

|sioif - [slotz }

] b} New bus cycle

new dynamic phase
Figure 5. Transformation of unused static
bandwidth into dynamic phases

unacceptably large. At the same time, for relatively large
intervals [,, @] it is reasonable to try more alternatives
than for tight intervals. In our ctirrent implementation we
set the number & as follows:

6,-0
k= max((—-z—é—-]—)xN, 1)

The value A is determined a1 the beginning of the scheduling
process after an initial ASAP and ALAP schedule has been
constructed for the TT tasks. A is the average of (ALAP(z)-
ASAP(T)) aver all TT tasks Ty Thus, the value of & will
oscillate around the value N, getting larger values for long
intervals {8;, 6;) and small values for short imervals. The
value N is set by the designer. [n Section 6 we present some
experimental results showing the influence of N on the
scheduling time and on the guality of the generated schedules.

2. Forthe case that no correct schedule has been produced, we
have implemented 2 backiracking mechanism in the list
scheduling algorithm, which allows to turn back to previ-
ous scheduting sieps and to try alternative solutions. In
order 10 avoid excessive scheduling iimes, the maximum
number of backtracking steps can be limited.

4. System Optimization
Considering a hard real-time system like the ope described in

Section 2, several design problems emerge. There are, of course,

the classical issues as selection of an architecwre {e.g. number

and kind of nodes), the mapping of tasks on the processing nodes,
or the assignment of priorities to ET tasks and DYN messages

[1],[71.0171. However, due to the heterogeneous ET and TT

nature of the application and the mixed synchronous/dynamic

bus protocol, some new, very interesting preblems can be identi-
fied:

* Partitioning of the system functionality into TT and ET
activities. During the design process, a decision should be
made on which tasks and messages will be implemented as
TT/ET and ST/DYN activities, respectively. Typically, this
decision is taken, based on the experience and preferences
of the designer, considering aspects like the functionality
implemented by the task, the hardness of the constraints,
sensitivity to jitter, etc. There exists, however, a subset of
tasks/messages which could be assigned (o any of the
domains. Decisions concemning the partitioning of this set
of activities can lead to various trade-offs concerning, for
example, the size of the schedule table or the schedulability
properties of the system.

= Determining the optimal structure of the bus access cycle.
The configuration of the bus access cycle has a surong
impact on the global performance of the system. The
parameters of this cycle have to be optimised such that they
fit the particular application and the timing requirements at
the task level. Parameters 10 be optirnised are the number of

[stph T dynphase] siph.] [stph.; Tdyn.ph. | st.ph.,{dyn.ph;]

"‘-\ /
{sLph, +stph, [dynphisey ;|

| st.oh., [dynphase,,, T stphal|

tdynph Il stph.; Kdynph. stphs §
l SLph.y |dynph1] stphz ﬁyn_ph_a

|dyaph [stph., +stph.g [dyaph @
a) Phase Splitting

[dyn.phesey, st phy+stphs]
b) Phase Merging
Figure 6. Operations on dynamic phases

static and dynamic phases during a commmunication cycle,

as well as the length and order of these phases. Considering

the static phases, parameters to be fixed are the order,
number, and length of slots assigned to the different nodes.

The optimization problems identified above can be
approached once the holistic scheduling technique presented in
Section 3 is available. In the next section we iliustrate this by con-
sidesing a particular problem related to bus access optimization.

5. Bus Access Optimization

We considet an application and an architecture like the one
described in Section 2. The designer has mapped the tasks on the
nodes of the system and has set the bus cycie according to his best
knowledge. After running the holistic scheduling presemed in
Section 3, it turns out that a correct static schedule for the TT
tasks and ST messages has been generated, but the ET task set is
not schedulabie. One of the reasons for this could be that there is
not sufficient bandwidth allocated for the commmunication of mes-
sages between ET tasks. The problem to be solved is to find 2
structure of the bus cycle such that more bandwidth is allocated
to the dynamic phases with the goal to improve the schedulability
of ET tasks while maintaining a correct static schedule.

As a first step, the optimization algorithm transforms some
parts of the static phases into dynamic phases. For each static slot
in the bus cycle and for each round in the static schedule we trans-
form the periodically unused part of the siot in a dynamic phase
(see Figure 5).

After this inittal step, various bus cycle configurations are
explored by splitting and merging bus phases. Figure 6 illustrates
the operations on dynamic phases. Three possible outcomes are
shown for both the splitting and the merging example. We have
implemented a simulated annealing based algonithm which
applies successive splitting and merging transformations with the
goal 1o improve the schedulabitity of the ET task set and the con-
straint of achieving a correct static schedule for TT tasks. The
objective function driving the algorithm is the fonction Cosr
introduced in Section 3.1

6. Experimental Results

For evaiuation of our scheduling and analysis algorithm and of
the bus access optimization heuristic, we generated a total of 80
applications. Each application consisted of 80 tasks mapped on
10 processor nodes. The percentage of ET tasks was 40% of the
total number of tasks for half of the application set and 60% for
the other half. Processor utilisation was 60% and 80%. The bus
bandwidth was equally divided between the dynamic and the
static phases. All experiments were run on an AMD Athlon
850MHz PC.

The first se1 of experiments concerns the holistic scheduling
algorithm and, in particular, the trade-off between speed and
quality. In Section 3 we have shown that the number of alterna-
tives considered for the placement of a TT task depends on the
coefficient N. A larger number of such altemaltives improves the
quality of the schedule but increases the schedule time. Figure 7

1

80 tasks (60% ET),
10 processors,
60% processor utilisation

g te o W

—

Scheduling time (sec)

=]
(=
W

10 15 20 25 30 35 40 45
N

Figure 7. Optimization time

shows how the scheduling time grows with N. When following
Figure 8, however, we can observe that the quality of the schedule
(expressed through the function Cost) at the beginning very
quickly improves with growing ¥, and then practically keeps at a
constant level. For all experiments a value of NV around 5 already
provided for the best guality schedule.

The next set of experiments concems the potential of the bus
access optimization discussed in Section 5. For this purpose we
selected that part of the generated applications for which the ET
component resuited unschedulable. Table | shows the results after
rnning our optimization heyristic for this application set. As can
be observed, the average improvement of the schedulability is
between 24% and 34%. with an average optimization time just
above 1 minute. As discussed in Section 3, these improvements
have been obtained considering only a very limited optimization
issue, namely the distribution of bandwidth between the static and
the dynamic phases. This demonstrates the huge optimization
potential of the different design problems discussed in Section 4.

Finally, we comsidered 2 real-life example implementing a
vehicle cruise controller and a control application related 10 the
Anti Blocking System. The cruise controller consists of 32 TT
tasks mapped over $ nodes. The second control system consists
of 30 ET tasks which are mapped on 3 of the same 5 nodes. Ini-
tially, the bandwidth on the communication bus is equally
divided between the static and dynamic phases. The scheduling
of the system took 0.57 seconds and resulted in a correct static
schedule and an unschedulable ET domain. After running the bus
access optimization, the schedulability (expressed in terms of the
function Cosr) has improved by more than one order of magni-
tude, resulting in a completely schedulable system. The optimi-
zation was solved in less than 2 minutes,

80 tasks (60% ET),
10D processors,
6% processor utilisation

3 3 4 5 6 7

N
Figure 8. Schedulability improvement with N

60% ET tasks 40% ET tasks
Processor . T . ..
utilisation|schedulability | optimiza- [schedulability| optimiza-
improvement | tion time |improvement| tion time
(sec) (sec)
0% 34% 67.4 25% 109.8
30% 29% 64.7 24% 715

Table 1: Bus Optimization Results

7. Conclusions

Distributed embedded systems based on mixed static/dynamic
communication protocols are becoming the new standard for
automnotive applications. Such systems typicaily run applications
consisting of both ET and TT tasks. We have presented a holistic
scheduling and timing analysis approach for this class of systems.
A static cyclic schedule is constructed for TT tasks and ST mes-
sages and the schedulability of ET tasks and DY N messages is ver-
ified. The static schedule is constructed in such a way that it fits the
schedulability requirements of the ET domain, We have identified
a new class of system oprimization issues typical for the hetero-
geneous systems considered in the paper. In particular, we have
considered a bus access optimization problem and have shown
that the system performance can be improved by carefully adapt-
ing the bus cycle to the particular requirements of the application.

8. References

[1] M. Audsley, K. Tindell, A. et. al., “The End of Line for Static Cyclic
Scheduling?”, Sth Euromicro Works. on Real-Time Systemns, 1993.

[2] N.Audsley, A. Bums, et. al., “Fixed Prionity Preemptive Scheduling:
An Historical Perspective”, Real-Time Systems. 8(2/3), 1995,

{31 F Balarin, L. Lavagno, et. al., “Scheduling for Embedded Real-
Time Sysiems”, |EEE Design and Test of Computers, January-
March,1998.

4] R.Bosch GmbH, “CAN Specification Version 2.0", 1991.

(5] E.G. Coffman Jr. R.L. Graham, “Optimal Scheduling for two
Processor Systems”, Acta Informatica, 1, 1972.

[6) T. Demmeler, P. Giusto, “A Universal Communication Model for
an Automotive System Integration Platform”, DATE, 200].

{71 R. Emst, "Codesign of Embedded Systems: Status and Trends”,
IEEE Design&Test of Comp., Aprii-June, 1998,

[8] FlexRay homepage: hup:/fwww.flexray-group.comv.

[91 H. Kopetz, “Real-Time Systems - Design Principles for Distributed
Embedded Applications™, Kluwer Academic Publisher, 1997.

[10] H. Lénn, J. Axelsson, “A Comparison of Fixed-Priority and Static
Cyclic Scheduling for Distributed Automotive Control
Applications”, Euromicro Conf. on RTS, 1999.

{11] 1. C. Palencia. M. G. Harbour, “Schedulability Analysis for Tasks
with Static and Dynamic Offsets”, Proceedings of the 9th IEEE
Real-Time Systerns Symposium, 1998,

[12] P. Pedreiras, L. Almeida, “Combining Event-Triggered and Tirmne-
Triggered Traffic in FIT-CAN: Analysis of the Asynchronous
Messaging Systemy”, WFCS, 2000.

[13] P. Pop, P. Eles, Z. Peng, A. Doboli, “Scheduling with Bus Access
Optimization for Distributed Embedded Systems*, IEEE
Transactions on VLS Systems, 8(5), 2000.

[14} P Pop, P. Eles, Z. Peng, “Bus Access Opurmszation for Distributed
Embedded Systems Based on Schedulability Analysis™, DATE, 2000,

[15]) P. Raja, G. Noubir, “Static and Dynamic Polling Mechanisms for
Fieldbus Networks”, ACM Operating Systemns Review, 27(3), 1993,

[16] K. Tindell, J. Clark. *“Holistic Schedufability Amalysis for
Distributed Hard Real-Time Systems”, Microprocessing &
Microprogramming, Vol. 50, Nos. 2-3, 1994,

{171 W. Wolf, "Hardware-Software Co-Design of Embedded Systems”,
Proceedings of the IEEE, ¥82. N7, 1994,

(18]). Xu, D.L. Parnas, “On satisfying timing constraints in hard-reat.
time systems”, IEEE Transactions on Software Engineering,
19(1), 1993,

192

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

