A Global Criticality/Local Phase Driven Algorithm for the Constrained
Hardware/Software Partitioning Problem

Asawaree Kalavade and Edward A. Lee

Dept. of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720, USA
{kalavade eal}@eecs.berkeley.edu

Abstract

An algorithm for the constrained hardwarel/software partitioning
(assignment and scheduling) problem is presented. The key fea-
ture of the algorithm is the adaptive objective mechanism gov-
erned by the combination of global and local measures. As
hardware area minimization and latency constraints present con-
tradictory objectives, a global time-criticality (GC) measure se-
lects an objective function in accordance with feasibility. In
addition to global consideration, local characteristics of the
nodes are emphasized by classifying nodes into local phase (LP)
types. A local phase I node (extremity) has an obvious preference
Jor an implementation on the basis of its arealtime requirements.
A local phase 2 node (repeller) is a repeller to an implementation
on the basis of relative preferences of other nodes. At each itera-
tion, the global and local criteria are superimposed by a thresh-
old mechanism so as to determine the best implementation. The
algorithm has quadratic complexity in the number of nodes and
has shown promising behavior on the examples tested.

1.0: Introduction

Typical applications of embedded systems include telecom-
munications, multimedia systems, consumer products, robotics,
and automotive control systems. Options to implement such sys-
tems include general purpose programmable processors and full-
custom ASICs. Application-specific systems are commonly used
whenever performance requirements (throughput) cannot be met
by general-purpose solutions. However, a completely applica-
tion-specific solution is often too expensive in terms of the design
cost and time. It is hence increasingly common to use a mixed
hardware/software implementation for such systems. Typically,
custom hardware is used for the performance-intensive portions
of the application, combined with a programmable processor to
implement the rest. This gives the advantage of meeting perfor-
mance requirements with a reduced design cost.

The design of such heterogeneous hardware/software systems
is often referred to as hardware/software codesign or system-level
design. The objective is usually to obtain an implementation that
meets the performance requirements at a minimum cost. The fi-
nite capacities of the hardware and the software resources consti-
tute additional constraints in the problem. In the context of
hardware/software codesign, four key problems emerge [1]: par-
titioning, synthesis, cosimulation, and design methodology man-
agement. In this paper we will focus on the hardware/software

0-8186-6315-4/94 $04.00 © 1994 IEEE

42

partitioning problem. The synthesis of mixed hardware/software
components and the generation of a simulation model for the
mixed system have been discussed in detail elsewhere [2].

The outline of this paper is as follows: In Section 2.0 the prob-
lem is first defined. Related work is discussed in Section 3.0. In
Section 4.0 the GCLP algorithm is presented. Analysis of the al-
gorithm and experimental results are presented in Section 5.0 and
Section 6.0.

2.0: The hardware/software partitioning
problem

The application is described as a DAG (G = (N,A)), where
nodes represent computations (at a task or process level of gran-
ularity) and arcs describe data and control precedences between
nodes. Associated with each node i are four non-negative num-
bers: ah; (area required for hardware implementation of i), as;
(code size required for software implementation of i), th; (execu-
tion time for hardware implementation of i), and ts; (execution
time for software implementation of i). Associated with each arc
{ij) is a non-negative integer Ny, indicating the number of sam-
ples of data sent from node i to node j. The underlying target ar-
chitecture is assumed to consist of a programmable processor and
custom hardware (motivated by the core-based ASIC technolo-
gy). Costs associated with the communication of one sample of
data across the hardware/software interface are specified by non-
negative numbers ah,,, (hardware area), as,qu, (software ar-
ea), and #.,,, (time). Design constraints include the latency (7),
the capacity of the hardware resource (AH), and the capacity of
the software resource (AS: available memory).

The hardware/software partitioning problem is to find a map-
ping (assignment /;) of nodes to hardware and software, and the
start time of each node (schedule fs;), subject to the above con-
straints and taking communication costs into consideration, such
that the area occupied by the nodes mapped to hardware is mini-
mum.

3.0: Related work

The heterogeneous hardware/software partitioning problem
can be formulated as an ILP for an exact optimal solution. How-
ever, this formulation becomes intractable for realistic signal pro-
cessing problems with multirate operations.

Some heuristics have been reported in the area of hardware/
software partitioning. Gupta et. al. [3] present a hardware-orient-
ed approach where all nodes (except the data-dependent tasks) are
initially mapped to hardware. The nodes are progressively moved
to software (using a greedy approach) according to the timing
constraints. The algorithm does not optimize hardware or soft-
ware utilization. Henkel et. al. [4] present a software-oriented ap-
proach where all the tasks are mapped to software at start. The
nodes are then moved to hardware (using Simulated Annealing)
until timing constraints are met. This requires a long run time and
the quality of the solution depends on the cooling schedule.
Baros[5] presents a clustering-based approach to the partitioning
problem. This formulation ignores precedences and scheduling
information; it solves only the assignment problem.

Heterogeneous multiprocessor scheduling formulations in the
literature[6][7] cannot be applied directly to the hardware/soft-
ware partitioning problem as they ignore the area dimension
while selecting the mapping.

Considerable attention has been directed towards the hardware
partitioning problem in the high-level synthesis community. The
goal in most cases is to meet the chip capacity constraints; timing
constraints are not considered. Most of these approaches
[81[91{10] use a clustering-based approach first presented by
Camposano et al. [11].

Force Directed Scheduling, presented by Paulin et al. [12] de-
termines the assignment time step in accordance with a global
concurrency mechanism. However, it ignores area heterogeneity
and hence it cannot be applied to model the heterogeneous hard-
ware/software partitioning problem, where nodes can be mapped
to multiple implementations differing in area and time properties.

4.0: The global-criticality/local-phase driven
algorithm (GCLP) for constrained hardware/
software partitioning

In order to minimize the hardware area, an intuitive solution is
to map as many nodes as possible to software (group migration).
This would result in a good utilization of the existing software re-
source and also reduce the hardware area. However, latency and
capacity constraints could restrict this.

Another approach is to serially traverse a node list and map
each node to an implementation that minimizes some objective
function. Two possible objective functions could be used: mini-
mize the finish time of the node (governed by the execution time
on the selected implementation and the communication between
the node and its predecessors) or minimize the percentage re-
source consumed by the node (hardware area/software size).
However, meeting timing constraints and minimizing hardware
area are contradictory goals. For example, an objective function
that minimizes the finish time drives the solution towards time
feasibility. Selecting the faster implementation could, however,
drive it away from the optimal solution (minimum area). On the
other hand, if a node is assigned to an implementation that mini-
mizes hardware area, it is possible that feasibility will not be met.
Another inherent limitation with serial traversal is its greedy ap-
proach; allocation is unlikely to be globally optimal.

The GCLP partitioning algorithm traverses a node list, and for
each node i, it determines the mapping (I;) and the start time (ts;).

43

ining = latency

elect Mapping
Find start time 1s

N times

Figure 1: The GCLP Algorithm.

It overcomes the limitations of serial traversal. Instead of using a
hardwired objective function, the GCLP algorithm selects an ap-
propriate objective at each step. The objective function is select-
ed in accordance with the following measures: 1. Global
Criticality (GC): A global lookahead measure that gives an esti-
mate of time criticality at each step of the algorithm. 2. Local
Phase (LP): A measure of node heterogeneity characteristics.
The main body of the algorithm is shown in Figure 1. (The size
of the graph is N. U is the set of unscheduled nodes, set to N at
start. S is the set of scheduled nodes, empty at start.) In each iter-
ation, a node is first selected from among ready nodes (nodes
whose predecessors have been scheduled) based on an urgency
criteria. The selected node is to be assigned an implementation (I;)
and scheduled in a time slot (starting time ts;). The assignment of
the node is based on two factors: global criticality and local phase.
In particular, GC is a global measure of time criticality at each
step of the algorithm, based on the scheduled and unscheduled
nodes and the latency requirements. It directs the selection of the
objective function (see Figure 2) used to determine the mapping
for the node under consideration. If time is critical, GC favors an
objective function that minimizes finish time, otherwise it mini-
mizes area. GC is compared to a threshold to select an objective
function. Mapping based on just GC consideration is not likely to
be globally optimal because of node heterogeneity and the node-

Objt
: "i: min(% resource consumed)
global (time) y Obj2
criticality TH min(finish time)
measure
threshold

B

Local Phase delta « Phase 1 (Extremity)
(nodal preference / « Phase 2 (Repeller)
properties measure) « Phase 3 (Normal)

Figure 2: Objective function selection at each iteration

invariant nature of the GC at each step. The GCLP algorithm clas-
sifies nodes into three types: local phase 1(extremity), local phase
2(repeller), and local phase 3 (normal) nodes.

As nodes are at a task level of granularity, they could exhibit
heterogeneity in area/time consumption on hardware and soft-
ware implementations. The GCLP algorithm classifies resource
hogs as extremities (local phase 1 nodes). For instance, a hard-
ware extremity requires a large area when implemented in hard-
ware, but could be implemented inexpensively in software. The
local preference of such nodes, expressed by a local phase delta,
modifies the threshold used in GC comparison.

Also, once a feasible solution is obtained, it is usually possible
to further swap nodes between hardware and software so as to re-
duce the allocated hardware area. The GCLP algorithm uses the
concept of repellers (local phase 2 nodes) to perform on-line
swaps between similar nodes across different implementations.
This avoids a post-mapping swap. We identify certain nodal prop-
erties (called repeller properties) that are correlated to area/time
gain. These repeller properties are ranked by a measure called the
effective repeller value (RV). Given two nodes with similar soft-
ware characteristics, and the choice of mapping only one of them
to hardware, the node with a higher a software repeller value is se-
lected. The repeller property value is used to modify the threshold
used in GC comparison.

In summary, the global lookahead mechanism of GC over-
comes the locality problems inherent to serial traversal and allo-
cation of nodes. In addition, the local phase characteristics modify
the threshold in accordance with the degree of node heterogeneity
and repeller values.

The global criticality and local phase measures are next de-
fined. This is followed by a detailed discussion of the GCLP algo-
rithm. The motivation for using the local phase is further
described at the end of this section.

4.1: Global criticality

Let us define state k as that when & nodes have been mapped.
The algorithm begins at state 0 and ends at state N for N nodes in
the graph. For every state k, GC(k) is the probability that any un-
scheduled node is implemented in hardware in order to meet over-
all feasibility. A high value of GC indicates that more nodes need
to be mapped to hardware so as to get a feasible solution. GC is
thus a measure of time criticality required to maintain time feasi-
bility. GC is computed by the following algorithm:

Algorithm: Compute_GC

Input: Scheduled (S) and Unscheduled (L) nodes,
T remaining 15; and th; the software and hardware
execution times, size; size of nodes

OQutput: GC

Procedure:

1.Find H nodes to move to hardware in order to meet latency
1.1.Estimate H using a priority function Pf
1.2.Compute the actual finish time (Tg,(H)) based on
these H nodes moved to hardware
1.3.If not feasible, go to 1.1

gsize.
i

size.
i

2.Compute GC = and update Tep,.

ining

In Step 1.1, the H nodes to be moved to hardware are first es-

44

timated such that the remaining U\ H nodes can be executed on
the software resource within Tyemqining. The nodes to be moved to
hardware are selected from an ordered list ranked on the basis of
a priority function Pf.

One obvious Pfis to rank the nodes in the order of decreasing
software execution times s;. A second possibility is to use (¢s; -
th;) as the function to rank the nodes. This has the effect of mov-
ing nodes with the greatest relative gain in time when moved to
hardware. A third possibility is to rank the nodes in increasing or-
der of ah;. Nodes with smaller hardware area are moved first. We
are currently experimenting with different Pfs to study the effect
of GC on the performance of the algorithm.

Note that the H nodes obtained in Step 1.1 is an estimate (low-
er bound) for the nodes to be moved to hardware to meet latency
constraints, since precedences are ignored in this calculation. Step
1.2 determines if these H nodes meet feasibility by actually com-
puting the finish time (O(A) algorithm). If the result is infeasible,
additional nodes are moved by repeating step 1.1. GC is computed
in Step 2. The size of a node is the number of elementary opera-
tions (atomic at the level of the resource: add, multiply, etc.) in the
node.

GC is thus the proportion of unscheduled nodes that need to be
mapped to hardware based on the state of the system and latency
requirements. Simplistically, GC(k) can be thought of as the
node-invariant probability that any unscheduled node, in state &,
is mapped to hardware. It may change at each iteration of the al-
gorithm. A high GC indicates a global time criticality.

4.2: Local phase
All nodes in a graph are classified into three disjoint sets:
phasel (extremity), phase 2 (repeller), and phase 3 (normal node).

4.2.1: Extremity nodes (Phase 1)

Define / and 1 to be complementary implementations. A node
is an extremity to an implementation /, if it consumes a large
amount of the precious resource on [(time for the software re-
source, and area for the hardware resource) and a relatively small
amount of the precious resource on] — the rationale in moving
this node to I is obvious. We define such a node to be a local
phase I node. For example, a hardware extremity node is a node
that consumes large area hardware but is not too intensive in soft-
ware. Figure 3 describes a mechanism to identify the software and

A

relative
frequen
(nodes)

n
»

ah(p) ah
Figure 3: Hardware (EX;) and software (£X,) extremities.

hardware extremity sets EX; and EX, respectively.

[Algorithm: ~ Compute_Extremity_Sets

Input: ts;, ah; the software execution time and hardware
area for each node i

Output: EX, and EX),

[Procedure:

1. Compute the histograms for the software execution times and|
hardware areas, given the ts; and ah; values respectively.

2. Choose top percentiles a and § that determine the lower cut-]

offs ts(a) and ah(p) for the ts and ah ranking of nodes respec-|
tively.
3.1f (15,2 45 (@) and ah; <ah ()), i€ EX_

If(ahl.ZGh(ﬁ) and ts'.<ts (o)), i€ EXh

{. Define extremity measure x:

tsi/’smax ahi/ahmax
IficEX ,x= else x = ——— 0<x<1
s ah./ah 1s./ts
i max i “max
where tsmax = maxi{tsi} and ahmax = max; {ah'.} .

5. Order the extremity set members by x.

4.22: Repellers (Phase 2)

Nodes in a graph are at a task level of granularity; i.e. an in-
struction-level subgraph is associated with each node (Figure 4).
Several repeller properties can be identified for each subgraph.
For instance, bit-level instruction mix and precision level are soft-
ware repeller properties; memory-intensive instruction mix and
table-lookup instruction mix are hardware repeller properties.

Let us consider the bit-level instruction mix repeller property
in some detail. Bit-level Instruction Mix (BLIM) is a software re-
peller property; higher the BLIM, higher the repeller value. It is
defined as the fractional contribution of bit-level instructions to
the total instructions in a node (BLIM;:0< BLIM <1). Consider
two non-extremity nodes n; and n,, with software and hardware
areas asy, asy, ah;, ah; respectively. Suppose BLIM | >BLIM, .
Now, if as) ~as,, then ah <ah, (because bit-level operations
can be done in a smaller area in hardware). Thus, n, is a software
repeller relative to ny, based on the bit-level instruction mix prop-

Other software(S) and hardware(H) repeller properties have
been similarly quantified. The effective repeller value of a node is
computed as a convex combination of the values of the various re-
peller properties. The algorithm outlined below describes the
computation of the effective repeller value (RV) for each node.

Figure 4: Nodal subgraph and a repeller property.

45

Compute_EffectiveRepellerValue

For node i in N, for repeller property p in P
(P=S U H),the value of the property Vip-
For each 1, the effective repeller value RV;

Igorithm:
nput:
Output:
[1. Compute for each property p:
o (vi,p) = variance, over i, of Dip
min(v;,) = minimum, over i, of v;,
max(o; ;) = maximum, over i, of 7; ,

0! v; '
L)
of v.
pPEP b
2. Compute the normalized property value (nv;) for property p,
for each node i

= weight of repeller property p

v, 'min(v!)
ny, =—2>2f 5P whereOsnv, <1.
bP max(v; 2 min (v,) Lp

3. Compute the effective repeller value (RV)) for each i

=1 . . -05<RV.<05
RV. == R . . i .
i=5 (PGZHap nvl‘p p;sap nv‘,p)

The weight &, of a property is proportional to its property val-
ue variance, since repeller values are computed relative to other
nodes. In Step 3 above, we currently assume that the hardware
area gain is linearly correlated to the software repeller value. The
exact correlation is being investigated and would modify the
weights of the individual properties, a,.

In summary, a node is a repeller to an implementation if it is
not an extremity, and if it possesses a non-zero effective repeller
value. Repellers are classified as local phase 2 nodes. The effec-
tive repeller value of a node is a measure of the resource utiliza-
tion gain through swapping of two similar phase 2 nodes between
complementary implementations.

A node that is not an extremity or a repeller is defined to be a
phase 3 node (normal node).

The GCLP algorithm is presented next. The motivation for us-
ing extremities and repellers is discussed in Section 4.4.

4.3: The GCLP algorithm

Algorithm: GCLP

Input: G = (N,A); Vi € N : ah;(hardware area), as; (software code
size), th; (execution time in hardware), fs; (execution
time in software), and RV, (effective repeller value)

V(iJ) € A : Nij: number of data samples sent from i to j,
M o (hard ware area), a5y, (software size), and t gy,
(execution time) per data sample transferred between
hardware and software.

AH, (hardware capacity), AS, (software capacity), and T
(atency) constraints.

Extremity sets EX; and EX),

Vi € N, implementation /; (O:hardware, 1:software) and
start time ts;.

Initialize: U = {unscheduled nodes} = N, S = {scheduled nodes} =%
Procedure:

while (U1 >0}

{

1. Compute GC using Compute_GC

2. Determine the set of ready nodes R
3. Compute the effective execution time tg,(i) for each node i

Ifie U toxec(l) = GC.th; + (1-GQ).ts;
elseif i€ S texedi) = tf;

4. Compute the longest path (longestPath(i)), Vi € R using teeli)

Output:

(Section 4.1)

5.Select nodei, i € R, for assignment: max(longestPath(i))
6.Select implementation [; for i:

x-x
L. 0.5

6lifie (EXSUEXh) A = sign - — (phase 1)
a7l

else if(RV,;=0) A =RV, (phase 2)

else A=0; (phase 3)

where
sign=-1if i € EX ,elsesign=1
x = extremity measure for i (Section 4.2.1)
x; (x3) is the minimum(maximum) x over all i
RV; = effective repeller value for i (Section 4.4.2)

-055A<505
6.2. Threshold = 0.5+ A, 0< Threshold <1
6.3.1f (GC 2 Threshold) p: min(Obj2);
else p: min(Obj1);
64.1;=p; Set(ts); U= U\li}; § « {i},
Update(T, ingz AHremainings ASremaining)?

c c
as; ahi

Objl: (o)
AS AHremaim'ng

Obj2: tfin (i,I) ,where I € (0,1)

tnliD) = max((g(by 1) + £ (b)), thnlivag D) + tGD)
where
b; = predecessor of i,
I, = mapping of b;,
tfin(bily) = finish time of b; on I,
t(b;i) = communication time between b; and i,
il = last node mapped to implementation I,
tfinliased) = finish time of i, on 1
i,I) = execution time of i on implementation .
Comments:
Obj1 uses a “percentage resource consumption” measure. Note
that for hardware, the area required by a node is computed as a
fraction of the remaining hardware area (AHmmmmg). Obj1 thus
favors software allocation as the algorithm proceeds. The re-
source area required (as, ah) incorporates communication
components (@A comm, @Scomm, Nij) between the node i and its pre-
decessor.
Obj2 selects an implementation that minimizes the finish time
of a node; its formulation is self-explanatory.

4.4: Threshold modification in the GCLP
algorithm

In this section we describe the rationale for modifying the
threshold using local phase nodes.

4.4.1: Use of extremities (Phase 1 Nodes)

Let us assume that GC is computed using ?s,,,, ranking for
moving nodes from software to hardware. Suppose the extremity
effect on threshold is ignored. At any state £, GC(k) can be mis-
leading (for assignment) on two counts because of its node invari-
ant interpretation over all unscheduled nodes.

1. Itsdirect use could lead to an obvious (irreparable) local sub-
optimality. At state k, let the ready node i be a hardware
extremity. It is likely that in the GC(k) computation, this
node i is retained in software due to the #s,,,, rank-based

swapping. If the resultant GC (¥) 20.5, i could get mapped
to hardware based on time-criticality. However, i is a hard-
ware extremity and mapping it to hardware is undesirable
from the area minimization objective. Hence, to avoid subop-
timality, a mechanism to move up the threshold by atleast
IGC(k) - 0.5} is needed.

2. It could direct towards infeasibility. At state , let the ready
node i being mapped be a software extremity. It is likely that
in GC(k) computation, this node i is moved to hardware. If
the resulting GC (k) <0.5, this node could be retained in
software, thus changing the mapping assumed in GC(k) com-
putation. However, i is a software extremity, and mapping it
to software could cause infeasibility based on execution time.
Hence, to avoid infeasibility, a mechanism to move down the
threshold by atleast 10.5 - GC(k)| is needed.

As discussed above, the threshold needs to be modified
(Threshold = 0.5 + A) to reflect the effect of extremities. A simple
approach is to assume a constant slope for A over the minimum
to maximum range of the extremity measure (Section 4.2.1).

4.42: Use of repellers (Phase 2 Nodes)

Once a feasible solution is obtained, the overall hardware area
can be further reduced by swapping nodes between hardware and
software. Repellers constitute a virtua! on-line swap mechanism
to reduce the overall hardware area — a post-mapping swap is
avoided. Recall that the repeller value is a measure of the swap-
ping gain of two similar phase 2 nodes. Given a choice of map-
ping just one of two nodes to hardware, the node with & higher
software repeller value is chosen. Given a ready phase 2 node i
with a sufficiently high repeller value in implementation /, the al-
gorithm tries to achieve a relative shift of i out of /. Specifically,
it modifies the threshold such that the objective selected will favor
the complementary implementation I. This swap frees up 7 for an
as-yet unscheduled node with a lower repeller property, thus re-
ducing the overall allocated hardware area. The swap is termed
virtual because it does not involve two concurrent nodes as in a
traditional swap.

The threshold is modified to reflect the repeller value:
Threshold = 0.5+ A, where A =RV (Section 4.2.2).

5.0: Experimental results

We present two sets of experimental results. The first experi-
ment is a comparison of the solutions obtained from the GCLP al-
gorithm and the optimal ILP formulation. In the second
experiment, the GCLP algorithm is applied to three scenarios in-
order to study the effectiveness of the local phase nodes.

5.1: Examples

The first example is a 32KHz 2-PSK modem. The nodes are at
atask level of granularity (individual nodes include carrier recov-
ery, timing recovery, equalizer, scrambler, etc.).

The second example is a 8KHz bidirectional telephone chan-
nel simulator (TCS). The task-level nodes include a linear distor-

tion filter, a Gaussian noise generator etc.
A multirate version of the first example (85 nodes) has also
been tested.

5.2: Estimation of area/time properties

The Motorola DSP 56000 was used as the target software pro-
cessor, and hardware was implemented using custom hardware
synthesized by Hyper[13]. Memory-mapped I/O was used for the
hardware/software communication. The application was devel-
oped in the SDF domain of Ptolemy[14]. An acyclic precedence
graph was generated for the application automatically. The graph
was then retargeted to the 56000 assembly code generation do-
main of Ptolemy (CG56) and assembly code for the Motorola
56000 was generated[15]. Estimates of the software area (as;) and
execution time on software (ts;) were obtained from this. The
graph was also retargeted to the Silage domain and Silage code
was generated[2]. Area and time estimates for hardware imple-
mentation were obtained by running the generated silage code
through Hyper. The hardware execution time (th;) was computed
as the best-case execution time (critical path). Hardware area es-
timates (ah;) corresponding to this execution time were comput-
ed.

5.3: Experiment 1
The examples are partitioned using the GCLP algorithm. The
results (Table 1) are compared to those obtained by solving the

’e;mplc size | P | 1P | 1P |lere|Geore [erp
nodes)) HA | SA | Uil || HA | SA Util.
modem | 27 | 62% | 98% |93.8%|| 64% | 84% [84.8%
Tcs | 15 | 89% | 53% |73.5%|| 89% | 53% [73.5%

Table 1: Results from ILP and GCLP algorithm.

corresponding ILP formulation. The quantities HA, SA, Util., in
Table 1 correspond to the total hardware area (as a fraction of the
capacity), the total software size (as a fraction of the memory ca-
pacity), and the DSP utilization respectively, in the resulting so-
lution. A good solution corresponds to a low hardware area and a
high DSP utilization.

1. The solutions compare favorably. For the first example, the
GCLP results are reasonably close to the optimal solution (all
but one node had identical mappings). The GCLP solution
for the second example is identical to the ILP solution.

The ILP ran for several hours, whereas the GCLP algorithm
finished in the order of seconds.

5.4: Experiment 2

The GCLP algorithm is run on example 1 under three scenari-
os. In the first case, the local phase node classification is not con-
sidered (A = 0). In the second case, the effect of using only the

extremities is considered (no repellers). In the third case, A for
both extremities and repellers is considered. Table 2 summarizes
the results.

47

Algorithm Scenario hardware | software | DSP
area area [utilization
GC only, 64% 388% | 885%

no local phase delta

GC, and delta for extremities || 61% 48.6% 85%
only (no repellers)

GC, with delta for extremities|| 51.66% | 68.5% 86%

and repellers

Table 2: Comparison of results from different scenarios of
GCLP algorithm for example 1.

1. Local phase nodes significantly improve the solution (64%
hardware area required without local phase nodes vs. 51.66%
hardware area required when local phase nodes are consid-
ered).

Repellers reduce the hardware area through their virtual-
swap mechanism (61% hardware area required when repeller
nodes are not considered vs. 51.66% hardware area required
when repeller effects are considered).

3. The extremities are seen to match their expected implementa-
tions (ex: Pulse Shaper, a hardware extremity node, is
mapped to software. Carrier Recovery, a software extremity
node, is mapped to hardware).

Repeller nodes are also mapped to their desired implementa-
tions (ex: Scrambler, a high BLIM software repeller, is
mapped to hardware).

5. Also, ranking using 5,4, and (¢s - th) gives better GC esti-
mates (better solution) than the ah,y,;, ranking,

6.0: Algorithm analysis

1. The GCLP algorithm has a worst-case complexity of O(NA),
where N is number of nodes and A is number of arcs. For
graphs representing signal processing systems,
0 (A) =0 (N): the algorithm has quadratic complexity.

2. The algorithm detects violation of the timing constraint dur-
ing GC calculation. A violation of the timing constraint
implies one of the following: GC pointed to an implementa-
tion, but the node could not get its preferred implementation
because the resource was exhausted, or GC pointed to an
implementation, but the local phase effect swamped the GC.
In either case, a simple swap algorithm (O(N) per swap)
could be used to maintain feasibility.

3. The algorithm generates a solution that will never violate
capacity constraints by construction (an implementation is
selected only if a resource exists to implement it).

4. Algorithm boundedness is not proved yet. We are working on
the formulation of a goodness measure to evaluate the gener-
ated solution. Experimental results show that the generated
solution is close to optimal.

7.0: Conclusions

The GCLP algorithm for hardware/software partitioning has
been presented. The algorithm maps the selected node to an im-
plementation (hardware or software) in each iteration. The key
features of the algorithm are summarized:

1. Hardware area minimization and meeting latency constraints
present contradictory objectives. The GCLP algorithm uses a
global time-criticality measure (defined at each step by the
state of scheduled and unscheduled nodes) to determine the
objective function at each step.

2. In addition to global consideration, local characteristics of
the nodes are emphasized by classifying nodes as extremi-
ties, repellers, or normal nodes. The global criticality (GC)
maintains global feasibility, while the local phase (LP)
accounts for local optimality (extremities) and relative pref-
erences (repellers).

3. At each step, the global and local criteria are superimposed
by a threshold mechanism so as to determine the best objec-
tive. The combination of GC and LP gives a feasible solution
that is close to the optimal.

4. The GCLP algorithm is inherently robust due to the negative
feedback that stabilizes the value of GC.

The algorithm shows promising behavior. For the selected set
of examples, the results compared favorably with the optimal so-
lution.

Future work includes further tuning of the algorithm parame-
ters and extending the algorithm to partition among multiple hard-
ware implementations (I>2).

8.0: Acknowledgements

This research was supported by a grant from the Semiconduc-
tor Research Corporation (SRC 92-DC-008). Pratyush Moghe
and Prof. Jan Rabaey are gratefully acknowledged for helpful dis-
cussions.

9,0: References

[1] Asawaree Kalavade, Edward A. Lee, “Manifestations of
Heterogeneity in Hardware/Software Codesign”, Proceed-
ings of the 3lst Design Automation Conference, San
Diego, CA, June 1994, pp 437-438.

Asawaree Kalavade, Edward A. Lee, “A Hardware/Soft-
ware Codesign Methodology for DSP applications”, [EEE
Design and Test of Computers, Sept. 1993, pp 16-28.

R. Gupta, Giovanni DeMicheli, “System-level Synthesis
Using Re-programmable Components”, Proceedings of the
European Conference on Design Automation, Brussels,
Belgium, Feb.1992, pp 2-7.

Ernst R., Henkel J., “Hardware/software Codesign of
Embedded Controllers based on Hardware Extraction”,
Handouwts of the 1st Intl. Workshop on HardwarelSoftware
Codesign, Estes Park, Colorado, Sept. 1992.

(21

(3]

(4]

48

(5]

[6]

M

(8

91

[10]

[11]

[12]

[13]

[14]

[15]

Edna Baros, Wolfgang Rosential, “A Method for Hard-
ware/Software Partitioning”, Proceedings of COM-
PEURO’92, IEEE Intl. Conference on Computer and
Software Engineering, May 4-8, 1992, The Hague, The
Netherlands, pp 580-585.

G. Sih, E. A. Lee, “A Compile-Time Scheduling Heuristic
for Interconnection-Constrained Heterogeneous Processor
Architectures”, IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 4, No. 2, Feb. 1993, pp 175-187.

Hamada, T. Banerjee, S. Chau, PM., Fellman, R.D, “Mac-
ropipelining based heterogeneous multiprocessor schedul-
ing”, Proceedings of ICASSP-92: 1992 IEEE International
Conference on Acoustics, Speech and Signal Processing,
San Francisco, CA, USA, 23-26 March 1992, New York,
NY, USA: IEEE, 1992, p. 597-600 vol. 5.

E. D. Lagnese, D. E. Thomas, “Architectural Partitioning
for System-level Synthesis of ICs”, IEEE Transactions on
Computer Aided Design, Vol. 10, no. 7, July 1991, pp 847-
860.

F. Vahid, D. Gajski, “Specification Partitioning for System
Design”, Proceedings of the 29th Design Automation Con-
Jerence, June 1992, Anaheim, CA, pp 219-224.

M. C. McFarland, T. J. Kowalski, “Incorporating Bottom-
up Design into Hardware Synthesis”, /EEE Transactions
on Computer Aided Design, Vol. 9, no. 9, Sept. 1990, pp
938-950.

R. Camposano, R. K. Brayton, “Partitioning before Logic
Synthesis”, Proc. of the Intl. Conference on Computer
Aided Design (ICCAD), 1987, pp 324-326.

Pierre G. Paulin, John P. Knight, “Force-Directed Schedul-
ing for the Behavioral Synthesis of ASICs”, IEEE Trans-
actions on CAD, Vol. 8, no. 6, June 89, pp 661-679.

J. M. Rabaey et. al. “Fast Prototyping of datapath-intensive
Architectures”, IEEE Design and Test of Computers, pp.
40-51, June 1991.

J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy:
a Framework for Simulating and Prototyping Heteroge-
neous Systems”, International Journal of Computer Simu-
lation, special issue on “Simulation Software
Development,” January, 1994.

J. Pino, S. Ha, E. Lee, J. Buck, “Software Synthesis for
DSP Using Ptolemy”, invited paper in the Journal on VLSI
Signal Processing, special issue on “Synthesis for DSP”, to
appear: 1994,

