VHDL System-Level Specification and Partitioning in a Hardware/Software
Co-Synthesis Environment

Petru Eles”, Zebo PengT, and Alexa Doboli”

* Computer Science and Engineering Department
Technical University of Timisoara
Romania

Abstract

This paper deals with the problems of system-level spec-
ification and partitioning in hardware/software co-design.
It first discusses the implication of using VHDL as an imple-
mentation-independent specification language. A message
passing communication mechanism is proposed to relax the
strict synchronization imposed by the simulation-based
semantics of VHDL. A partitioning technique is then
described which is used to partition the VHDL specification
into a hardware part and a software part. The partitioning
is carried out during the compilation process of VHDL into
a design representation which identifies the hardwarelsoft-
ware boundary, while capturing hardware and software ina
uniform way to allow efficient co-synthesis of both parts.
The VHDL compiler and the partitioning algorithm func-
tion as the front end of a hardwarelsoftware co-synthesis
environment which is built on the design representation.

1. Introduction

We are currently developing a hardware/software co-
synthesis environment which accepts a VHDL system-level
specification of an application specific system and generates
hardware and software implementations which together will
implement the given specification. This paper describes two
main features of our co-synthesis environment: the use of
VHDL for system-level implementation-independent spec-
ifications, and a hierarchical, stepwise approach to
hardware/software partitioning.

In our environment hardware/software co-synthesis is
performed across successive refinement stages. The first
stage is carried out on the initial VHDL specification which
is pre-partitioned into a set of processes that are candidates
for hardware and another set for software. This partitioning
deals with subprograms, loops, and processes. The resulted

This work has been partially sponsored by the Swedish National Board for
Industrial and Technical Development (NUTEK).

0-8186-6315-4/94 $04.00 © 1994 IEEE

49

T Dept. of Computer and Information Science
Linkoping University
Sweden

VHDL specification is translated into an uniform design
representation, providing the possibility to handle, during
further design stages, hardware/software trade-offs and re-
partitioning at fine granularity. An important characteristics
of our approach is that it preserves process interaction
semantics during the synthesis process, from the high level
VHDL specification to the intermediate design representa-
tion for hardware and software, and finally to the
synthesized hardware/software implementations.

Several related approaches have been presented for the
specification and partitioning of complex hardware/soft-
ware systems [2], [3], [7]-[9], [11], [12], [16], [17]. They
differ in the nature of the initial specifications, the granular-
ity at which hardware/software partitioning is performed,
the degree of automation of the partitioning process, and the
design step in which partitioning takes place. The hardware-
oriented approaches consider the initial description as being
a hardware specification; during later design steps parts of
the system are decided to be implemented as software.
Gupta and De Micheli’s approach [8] [9], for example, starts
from an initial hardware specification in HardwareC. Por-
tions of the design are later moved into software as long as
some design constraints are satisfied.

Systems based on the software-oriented approaches, on
the other hand, assume an initial software specification of
the system. The Cosyma system [7], for example, accepts a
system specification in the form of communicating pro-
cesses described in an extended version of C. Some parts of
the software are then selected for hardware implementation,
in order to avoid violation of timing constraints. Similar
software-oriented approaches, starting from an initial spec-
ification in C (or C++), are presented in [11] and in [1].

The more general approaches start from an implementa-
tion-independent specification. One of such approaches is
based on an object-oriented functional notation as a co-
specification language [17]. In [2] a system for partitioning
implementation-independent specifications (based on
UNITY) is presented. The use of VHDL as an implementa-

tion-independent high level specification is advocated by
Ecker [3] and Kumar et al [12]. Ecker’s approach is based
on an early partitioning of hardware and software, which are
then separately synthesized, but can be simulated together at
different levels of synthesis. Kumar et al [12], on the other
hand, use an iterative refinement method for hardware/soft-
ware partitioning.

In our approach we start from an implementation-inde-
pendent system-level specification in VHDL. Partitioning 1s
then carried out in successive steps, both at coarse and at
fine grain level. This stepwise approach has the advantage
of reducing complexity of the partitioning process. At the
same time it combines the advantages of an early partition-
ing at the source program level, with those of graph level
partitioning. Partitioning at the graph level facilitates accu-
rate estimation of costs and speed, but at the same time
makes user interaction practically impossible. Pre-partition-
ing during the first refinement stage relies mainly on
information extracted from the structure of the VHDL spec-
ification and on simulation statistics and is performed in
interaction with the designer. It results in a readable, back-
annotated version of the original VHDL specification.
Therefore the designer can easily change the specification to
influence the partitioning results. This step is aimed at pro-
ducing a preparatory hardware/software partitioning so as to
reduce the design space for the graph level refinement steps.
Later partitioning of the design representation, on the other
hand, takes into account the estimated speed and cost in
respect to imposed design constraints, and works at the level
of operations.

This paper is divided into 5 sections. Section 2 intro-
duces briefly the proposed hardware/software co-synthesis
environment. Section 3 discusses features of VHDL as a
system level specification language, mainly from the point
of view of interprocess communication. In section 4 we focus
on the pre-partitioning of the VHDL specification. Finally,
section 5 presents the conclusion.

2. The Co-Synthesis Environment

The overall structure of our hardware/software co-syn-
thesis environment is illustrated in Fig. 1. The input
specification is given in VHDL which is extended to include
a send/receive mechanism for process communication [6].
Such a VHDL program is used to specify only the high-
level behavior of the designed system without prescribing
the hardware/software boundary or implementation details.
After compilation and pre-partitioning, the VHDL specifi-
cation is translated into a unified design representation
which identifies the hardware/software boundary, while
capturing hardware and software structures and semantics
in a uniform way [15]. This paper concentrates on the
VHDL compiler front-end and pre-partitioning package of
the co-synthesis environment, while this section briefly pre-

Pro,

Compiler
Front-end and

Hardware| Software

Pegformance
%nstlcs

r Y
Unified Design
Representation

Desi,
Constraints|

Components
(Object Code)

Fig. 1. Overview of the hardware/software co-synthesis
environment

sents the basic components of the environment,

The unified design representation is based on an
extended timed Petri net notation used originally for hard-
ware modeling [14]. The basic idea is to use Petri nets to
represent control flow in both hardware and software, which
are extended with a data path representation for hardware
operations and a data flow graph representing software
operations. The Petri net based notation is also extended
with timing information to facilitate performance evalua-
tion.

The compiler front-end and pre-partitioning package of
the co-synthesis environment is responsible for compiling
the VHDL specifications into the Petri net based design rep-
resentations. During the compilation process, a set of
heuristics is used to identify the initial hardware/software
boundary. This initial partitioning will eventually be
changed to reflect design decisions made to move function-
ality from one domain to the other so as to increase
performance, reduce implementation cost, or satisfy given
design constraints during the later synthesis steps. Re-parti-
tioning can also be done by using a graph-based partitioning
algorithm as described in [13].

The Petri net based design modeling technique is used to
formally capture the intermediate results of design transfor-
mations/optimization throughout the whole synthesis
process. It allows the designer to use verification and evalu-
ation techniques to analyze the intermediate design and
make appropriate design trade-offs. One of the evaluation
techniques is to use a simulation procedure to execute the
design representation with typical input stimuli and collect
statistics about data usage and control flow choices in a
given design. The graph-based partitioning algorithm can
then use this performance statistics together with other

design constraints to re-partition the design. When the final
partitioning is done, the hardware implementation is synthe-
sized by CAMAD [14], a high-level synthesis system,
which is built around a similar design representation. The
hardware implementation is considered as a specialized co-
processor which will be controlled by and interact with the
software generated by a compiler. We assume that the hard-
ware/software implementation architecture consists of a bus
controlled by a microprocessor on which the software is
also run. Coupled to the bus are a shared memory to be used
for hardware/software communication and the implemented
hardware.

The main objective of our approach is to develop an inte-
grated set of design tools which are capable of exploring the
design space quickly and provide accurate feedback infor-
mation to the designer. The integration of these tools is
achieved by using the extended timed Petri net notation as a
unified design representation, coupled with the use of an
iterative transformation-based approach to carry out the
synthesis process. In this way, the synthesis process is for-
mulated as a sequence of iteration steps which transform an
(inefficient) initial design into a final design. The basic con-
cept in this approach is therefore design transformation, i.e.,
to change a design to achieve a goal or meet a constraint.
The traditional design tasks such as operation scheduling,
resource allocation, and module binding will also be carried
out by sequences of transformations. This transformation-
based approach to design has also been employed in the
high-level synthesis process of the hardware sub-system
{14], which results in a uniform approach to handle both
hardware/software co-synthesis and hardware synthesis. It
is also in line with the operational approach to software
development, namely to convert a formal executable speci-
fication into an efficient implementation by employing
automatic transformations.

3. VHDL for System-Level Specification

Complex digital systems are usually specified as a com-
position of interacting subsystems, each of them described
by a sequential process. VHDL, originally defined as a hard-
ware description language [10], has several features that
make it appropriate for system-level, implementation-inde-
pendent specification. Here are some of the requirements for
system-level specification supported by VHDL:

« Data and control abstraction;

« Structural hierarchy;

« Concurrency, synchronization, and communication;

« Timing specification;

+ Support for top-down design methodology, covering
several levels of the design process;

« Executable specifications (simulation);

« Support for both hardware and software description.

51

Even though it is defined as a hardware description lan-
guage, VHDL inherits features of Ada and thus includes
constructs appropriate for the description of software. Ben-
efiting from the above-listed features, the designer can
specify complex systems in VHDL, without having to con-
sider the possible implementation of one or the other
component in hardware or software. It is also possible to
execute the specification in order to test the resulted behav-
jor and to collect some statistics that are needed during
further design steps. Moreover, the results of successive
partitioning and synthesis steps can be specified in VHDL,
both for software and for hardware components. There are
also pragmatic arguments for using VHDL as the system-
level specification language for co-synthesis. For example,
there is a great number of commercially available VHDL
simulation and hardware synthesis tools which can be inte-
grated into co-synthesis environments.

Accepting VHDL as the input language for a co-synthe-
sis system requires that across all design steps toward the
final synthesis result, semantic equivalence with the initial
specification and its simulation behavior should be pre-
served. The main difficulty in this context concerns process
interaction. According to the VHDL standard, synchroniza-
tion and communication between processes are solved using
signal assignment and wait statements, the semantics of
which is defined in terms of the VHDL simulation cycle.
Thus, synthesis of a VHDL design with process interaction
specified at the signal level requires practically the imple-
mentation of the VHDL simulation cycle in order to achieve
semantic correspondence between the initial specification
and the synthesized system [6]. However, such a low level
synchronization and communication mechanism makes rea-
soning about processes and their interaction extremely
difficult. Therefore, both partitioning and synthesis become
extremely complex and inefficient if VHDL signal assign-
ments and wait statements are directly used.

What we need is a high level process interaction mecha-
nism that allows efficient reasoning about processes and
their interfaces during partitioning and synthesis, and at the
same time can be efficiently implemented both in hardware
and in software.

In [4] and [6] we present a model for system-level spec-
ification of interacting VHDL processes and describe the
hardware synthesis strategy we have developed for it. This
model also fits perfectly to the framework of our hardware/
software co-synthesis environment. According to the
model, processes are the basic modules of the design, and
they are interacting using a synchronous message passing
mechanism with predefined send/receive commands. Com-
munication channels are represented by VHDL signals.
Assignment of a value to a signal is done by a send com-
mand. Processes that refer to a signal will wait until a value
is assigned to it, by calling a receive command. Both send

and receive commands have the syntax of ordinary proce-
dure calls in VHDL.

Processes communicating according to this mechanism
are loosely coupled and can be implemented without
enforcing the strong synchronization implied by the VHDL
simulation cycle [6] (such a strong synchronization would
be highly inefficient, especially across software/hardware
boundaries). At the same time, communication interfaces
between processes can be easily established or modified
during partitioning, when new processes are created or
functionality is moved from one process to another.

In the context of our co-synthesis environment, a VHDL
description corresponding to this model can be simulated,
partitioned, translated into the unified design representation
and then synthesized [6], [15].

4, Pre-partitioning of VHDL System-Level Design

Pre-partitioning is performed in the first stage of the co-
synthesis process (Fig. 1). As illustrated in Fig. 2, it takes as
input the VHDL system level specification, and generates as
output a VHDL model consisting of two sets of interacting
processes. The processes in one set are marked as candidates
for hardware implementation, while the processes in the
other set as software implementation candidates. These two
sets of processes are then compiled together by the VHDL
front-end compiler to the unified design representation.

Pre-partitioning is performed in three steps:

1. Extraction of loops and subprograms: certain loops
and subprograms are identified and extracted from the
initial set of processes and are encapsulated as
separate processes.

2. Generation and partitioning of the process graph:
during this step a partitioning of processes into

),
S P,
'*}, User-

interactio

R O

Pre-partitioned
VHDL
Program
hardwaxel ‘ software

partition partition

Fig. 2. Pre-partitioning

52

hardware and software is performed.

3. Merging back some of the processes that have been
split in step 1. During step 1 one or several child
processes are possibly extracted from a parent
process. If, as the result of step 2, some of the child
processes are assigned to the same (hardware or
software) partition with their parent process, they are
merged back together.

The first two steps are discussed in more details in sec-
tions 4.1 and 4.2, where we will also illustrate that
manipulation of processes throughout the whole pre-parti-
tioning process is made possible by the message-passing
based interaction model we have developed for system-
level VHDL specification.

Our pre-partitioning is strongly based on simulation sta-
tistics which are collected by a simulator as depicted in Fig.
2. At the same time, all major decisions taken by the design
tools can be influenced through user-interaction. This inter-
action is straight forward since all operations are performed
at the VHDL source level. Simulation, in preparation to pre-
partitioning, is carried out with typical input stimuli. Statis-
tics data are collected from simulation of an internal
representation generated by our VHDL compiler. Two types
of statistics are used for pre-partitioning:

1. Computation load (CL) of a basic module (i.e., loop,
subprogram, or process) is the total number of
operations (at the level of the internal representation)
executed by that module, considering all its
activations during the simulation. The relative
computation load (RCL) of a loop or a subprogram is
defined as a fraction relative to the computation load
of the process the module belongs to; the relative
computation load of a process is a fraction relative to
the total computation load of the system.

2. Communication intensity (CI) on a channel is
expressed as the total number of send operations
executed on the corresponding signal.

4. 1. Extraction of Loops and Subprograms

During the first pre-partitioning step, processes are
investigated individually. The purpose is to identify and
extract those basic regions that are responsible for most of
the execution time spent inside a process (regions that can
possibly be considered for hardware implementation). The
basic regions are loops and subprograms. The designer
guides the identification of regions for extraction, by impos-
ing two boundary values:

1. A lower limit X on the RCL of processes that are

investigated for loop and subprogram extraction.

2. A lower limit ¥ on the RCL of a loop or subprogram

to be considered for extraction.

The search for candidate regions in the processes with

RCL greater than X is performed bottom-up, starting from
the most inner loops and the subprograms that are not con-
taining loops. Unless a loop or subprogram with RCL
greater than Y is found (or the most outer process level has
been reached) search is continued upward, into loops that
contain loops or subprograms containing loops. When a
loop or subprogram that has its RCL greater than Y is found,
it will be extracted and a new process will be built to have
the functionality of the original loop or subprogram.
Optionally, the designer can overrule this decision to move
a certain region into a separate process.

Communication between the original process and the
extracted process will be built using the send/receive mech-
anism described in section 3. Since synchronization with
send/receive does not affect all processes, but only those
involved in the specific communication, the original seman-
tics of the VHDL is preserved [6].

It should also be noted that subprograms are handled in
two different ways, depending on if they are called from a
single process or from several processes. Subprograms
called from several processes are automatically extracted
into separate processes (if there is no user option for in-line
expansion). This solves the problem of protecting shared
subprograms at synthesis [5]. Subprograms called by a sin-
gle process are considered as part of that process, unless
they are extracted as separate processes by the above-
described extraction algorithm.

In the following example we illustrate the generation of
new processes for a loop and a subprogram that are
extracted from the following two processes:

P1: process P2: process

L.O'OP_]: while x<k loop procedure p(a: in integer;

b: out integer) is

x- c+k;
end.l.o-op LOOP_1; bi=.. A T
end procss PI; end p,
begin
p(7, 2);

end process P2;

Given that the RCL’s of the loop and the subprogram in
the above example are greater than the lower limit ¥, two
new processes, PI_LOOP_I and P2_PROC _p, will be gen-
erated to execute the operations of loop LOOP_I and
subprogram p respectively. Communication channels to and
from the new processes are established according to the data
dependence relationship. In the above example, signals
s Pl _c, s PI k, s Pl _x to, and s_Pl_x_from are intro-
duced for communication between P! and PI_LOOP_1,
and signals s P2_a ands_P2_b for communication between
P2 and P2_PROC p. At process generation additional par-
allelism is also introduced, as far as data dependency

53

allows, by moving statements of the parent process into the
sequence between the send and the receive commands used
for synchronization with the child process. The new VHDL
code after the extraction step is as follows.

signals_P1_c,s_P1_k,s_P1_x_to,s_P1_x_from,s_P2_a,s_P2_b:
integer;

P1: process P2: process
send(s_P1_c, ¢, s_P1_x_to, send(s_P2_a, 7);
x, s_P1_k, k); ... -- additional paralielism
... -- additional parallelism receive(s_P2_b);
receive(s_P1_x_from); z:=5 P2 _b;
X :=s_P1_x_from; vee
end process P2;

encf process P1;

P1_LOOP_1: process
variable x : integer;

P2_PROC _p: process
variable b: integer;

receive(s_P2_a);
receive(s_P1_c, s_P1_x_to,
s_P1_k);
X :=s_P1_x_to; e
LOOP_l:while x<s_P1_k loop send(s_P2_b, b);
end process P2_PROC_p;

i)':'-...s__Pz_a...;

;(.:;- s_Pl_c+s_Pl k;

end loop LOOP_1;

send(s_P1_x_from, x);
end process P1_LOOP_1;

The final decision on if processes generated during this
step will be kept as separate modules or not depends upon
the two subsequent pre-partitioning steps. An important cri-
terion for this decision is the intensity of communication
between parent and child processes. It has been ignored at
the extraction step, but will be one of the main partitioning
criteria considered during the next step.

4. 2. Generation and Partitioning of Process Graph

The VHDL specification resulted from the first pre-par-
titioning step consists of a set of interacting VHDL
processes. Some of these processes are originally specified
by the designer; others are generated during loop and sub-
program extraction or are subprograms called by more than
one process. Statistics concerning computation load of the
generated processes and communication intensity on the
newly created signals are automatically recomputed during
the first pre-partitioning step.

The aim of the second step is to partition the processes
into two candidate sets, one for hardware and the other for
software. This task is formulated as a graph partitioning
problem. We construct a process graph where each node
corresponds to a process of the new VHDL specification; an
edge connects two nodes if and only if there exists a direct
communication channel between the corresponding pro-
cesses (i.e., there exists at least one signal with one process
executing send to it and the other receiving from it).

Let us consider the following VHDL example resulted
from the first pre-partitioning step.

port(ipl, ip2: in integer; opl, op2: out integer);

sxgnal s1, 52, §3, s4, s5, s6: integer;

P1: process P3: process PS: process
;éc;eive(ipl); ;'ééeive(s4); ;éc;eive(sl,ss)%
send(sl, ... J; send(s2, . . .); send(sd, . .);
'sér'ld(s3. e en(i i).rocess P3; emi process PS;
.réc.eive(s6); P4: process P6: process

end procm Pi; i-e'c;eive(s3); ;e.c;eive(SZ);

P2: process ;ér;d(s;s, v 0$6,...) ;;ér.nd(opl, Lo
;ééeive(ip2); end i)'rocess P4, end process P6;
'ré(;eive(s 1
send(op2,);

end process P2;

Fig. 3 illustrates the processes and their interconnection
channels. The corresponding process graph is depicted in
Fig. 4, which is then partitioned by a graph partitioning
algorithm.

The graph partitioning algorithm takes into account the
weights associated to each node and edge, which are used to
capture the simulation statistics (computation load, relative
computation load, and communication intensity) and infor-
mation extracted from data-flow analysis of the VHDL
processes. The following data extracted by data-flow analy-
sis are captured:

Nr_op;: total number of operations in the dataflow graph

of process i;
Nr_kind_op;: number of different operations in process i;
L _path;: length of the critical path (in terms of data
dependency) through process i,

The objective of this pre-partitioning step is to cluster
processes with large RCL, high uniformity of operations
and high potential of parallelism into the hardware partition
and to minimize the amount of communication between the
two partitions. Thus, the weight WiiV assigned to process
node i, is calculated by the following formula:

Wiv-MCLxKiCL+MU><K‘.U+M‘Pfo-MSO><K;.S'0;

ip2 op2
., L

OLTOLT O

Fig. 3. Processes and interconnection channels

54

Fig. 4. Process graph example

where:

K I.CL is equal to the RCL of process i, and thus is a measure
of the relative computation load of that process;
U Nr o P; U
P e . .
i =N Jnd o, K/ is a measure of the uniformity
of operations in process ;

Nr_op i p
kP =——_L; k% is a measure of the potential parallel-

t L path i !

ism inside process i;

w

Tsp, P
kS0 %=1 . kS0 captures the extent to which
! Nr_op; t

process i contains operations that are most suitable for soft-
ware implementation. SP; is the set of such operations
(floating point computation, file access, pointer operations,
recursive subprogram call, etc.) in process i and w, isa
weight associated to operation op;, measuring the degree to
which the operation has to be implemented in software; a
large weight associated to such an operation will dictate
software implementation for the given process, regardless
of other criteria.

The relation between the above-named coefficients kCL ,

, K, 0 are regulated by four different weight-multi-
pliers: ML, MY, Aﬂl , and M50, which can be controlled
by the designer.

The weight associated to an edge connecting node i and
Jj depends on the amount of communication between process
iand j, and is computed by the following formula:

wiEj - z wdy xCI ;

s, € Sigy;
where Sig;; is the set of signals which are used for commu-
nication between process i and j; wd ¢ is the width (number
of bits) of signal s; and I is the cothmunication intensity
on signal s. *

After constructing the process graph and assigning
weights to its nodes and edges, the graph is partitioned into
ahardware and a software subgraph. A simulated-annealing
algorithm, similar to the one presented in [13], has been
used for partitioning the weighted graph. The cost function
is defined by the sum of weights assigned to cut edges,
which is to be minimized under the constraints that no node

with a weight smaller than a given limit Wy, should be
assigned to the hardware subgraph and no node with a
weight greater than a limit Wy ;,,; should be assigned to the
software subgraph. Limits Wy;,,; and Wy, are regulated
by the designer.

The two subgraphs resulted after partitioning represent
the two set of processes that are considered as candidates for
hardware respectively software implementation. They will
be compiled to the corresponding design representation for
further design steps.

5. Conclusion

We have presented an approach to system-level specifi-
cation and partitioning in hardware/software co-design. It is
based on the basic idea that a hardware/software co-design
system should allow designers to start the design process
with a behavioral specification which does not prescribe the
hardware/software boundary or implementation details. We
have shown in this paper that such a specification can be
captured by the VHDL language. While arguing the advan-
tages of using VHDL, the main limitation of VHDL as a
hardware/software co-specification language has also been
identified and a solution to resolve the problem is proposed.
Our solution is based on the concept of reduced synchroni-
zation between VHDL processes, which is used to relax the
strict synchronization imposed by the simulation-based
semantics of VHDL. As a result of this, our method pre-
serves semantics correspondence between the system
specification in VHDL and its final implementation in hard-
ware and software, with little synchronization overhead and
minimal impact on system performance.

Another basic idea of our approach is that design parti-
tioning should be carried out at different stages. Starting
from a pre-partitioning at process, subprogram and loop
level, re-partitioning will successively be carried out when
implementation details are added. Since the pre-partitioning
dictates the global design structure, it must be carefully
done. In this paper, we present a technique to perform pre-
partitioning of the input VHDL specification, which sup-
ports the use of simulation results as well as user-interaction
to guarantee the partitioning quality. With the formulation
of the main partitioning step as a graph partitioning problem
based on different cost matrices, our algorithm is very flex-
ible and can be adapted for different partitioning styles and
applications. With part of the implementation and experi-
ment work still going on, we expect some modification to
the current matrix to take place. Nevertheless, the graph par-
titioning algorithm we have implemented has already been
used successfully in fine-grain partitioning in our hardware/
software co-synthesis environment.

55

References
[1] P. M. Athanas, H. F. Silverman, “Processor Reconfiguration
through Instruction-Set Metamorphosis,” Computer, March
1993,

E. da Silva Barros, “Hardware/Software Partitioning using

UNITY,” Ph.D. thesis, Fakultat fur Informatik, Universitat

Tubingen, 1993.

W, Ecker, “Using VHDL for HW/SW Co-Specification,”

Proc. EURO-DACIEURO-VHDL’93, Sept. 1993.

P. Eles, K. Kuchcinski, Z. Peng, M. Minea, “Two Methods

for Synthesizing VHDL Concurrent Processes,” Research

Report, LiTH-IDA-R-93-22, Dept. of Computer and

Information Science, Link&ping University, 1993.

P. Eles, K. Kuchcinski, Z. Peng, M. Minea, “Synthesis of

VHDL Subprograms and Processes in the CAMAD System,”

Proc. Workshop on Design Methodologies for

Microelectronics and Signal Processing, Cracow, Poland,

Oct. 1993.

P. Eles, K. Kuchcinski, Z. Peng, M. Minea, “Synthesis of

VHDL Concurrent Processes,” Proc. EURO-DAC/EURO-

VHDL'94, Sept. 1994.

R. Emst, J Henkel, T. Benner, “Hardware-Software

Cosynthesis for Microcontrollers,” IEEE Design & Test of

Computers, Dec. 1993.

R.K. Gupta, G. De Micheli, “Hardware-Software

Cosynthesis for Digital Systems,” IEEE Design & Test of

Computers, Sept. 1993.

R. K. Gupta, C. N. Coelho Jr., G. De Micheli, “Program

Implementation Schemes for Hardware-Software Systems,”

Computer, Jan. 1994.

[10] IEEE Standard VHDL Language Reference, IEEE Std. 1076-
1987, IEEE Computer Society Press, 1987.

[11] A. Jantsch, P. Ellervee, J. Oberg, A. Hemani, H. Tenhunen,
“A Software Oriented Approach to Hardware/Software
Codesign,” Proc. International Conf. on Compiler
Construction, April 1994.

[12] S. Kumar, J. H. Aylor, B. W. Johnson, Wm. A. Waulf, “A
Framework for Hardware/Software Codesign,” Computer,
Dec. 1993.

{13] Z. Peng, K. Kuchcinski, “An Algorithm for Partitioning of
Application Specific Systems,” Proc. EDAC’93, March
1993.

[14] Z. Peng, K. Kuchcinski, “Automated Transformation of
Algorithms into Register-Transfer Level Implementation,”
IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems, Feb. 1994,

[15] E. Stoy, Z. Peng, “A Design Representation for Hardware/
Software Cosynthesis,” Proc. Euromicro Conference’94,
System Architecture and Integration, Sept. 1994.

(16] D. E. Thomas, J. K. Adams, H. Schmit, “A Model and
Methodology for Hardware-Software Codesign,” IEEE
Design & Test of Computers, Sept. 1993.

[17] N. S. Woo, A. E. Dunlop, W. Wolf, “Codesign from
Cospecification,” Computer, Jan. 1994.

2]

{31

4

(51

(61

[7

(8]

9

