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1. INTRODUCTION 
Complex Programmable Logic Devices (CPLDs) and Field Programmable 

Gate Arrays (FPGAs) are becoming a critical part of every system design. Many 
vendors offer many different architectures and processes. Which one is right 
for your design? How do you design one of these so that it works correctly and 
functions as you expect in your entire system? These are the questions that this 
paper sets out to answer. 

The first sections of this paper deals with the internal architecture and 
characteristics of these devices. Simple programmable logic devices are 
described in an overview, leading up to a detailed description of the Complex 
Programmable Logic Device and the Field Programmable Gate Array. The 
various architectures of these devices are examined in detail along with their 
tradeoffs, which allow you to decide which particular device is right for your 
design. 

The next sections of this paper discuss in detail, the design, simulation, 
and testing issues that arise when designing a CPLD or FPGA. The final sections 
of this paper examine new architectures of programmable devices and the 
software needed to support them. 

Understanding these issues will allow you to design a chip that functions 
correctly in your system and will be reliable throughout the lifetime of your 
product. 

2. THE MASKED GATE ARRAY ASIC 
An Application Specific Integrated Circuit, or ASIC, is a chip that can be 

designed by an engineer with no particular knowledge of semiconductor physics 
or semiconductor processes. The ASIC vendor has created a library of cells and 
functions that the designer can use without needing to know precisely how 
these functions are implemented in silicon. The ASIC vendor also typically 
supports software tools that automate such processes as synthesis and circuit 
layout. The ASIC vendor may even supply application engineers to assist the 
ASIC design engineer with the task. The vendor then lays out the chip, creates 
the masks, and manufactures the ASICs. 

The gate array is an ASIC with a particular architecture that consists of 
rows and columns of regular transistor structures. Each basic cell, or gate, 
consists of the same small number of transistors that are not connected. In 
fact, none of the transistors on the gate array are initially connected at all. 
The reason for this is that the connection is determined completely by the 
design that you implement. Once you have your design, the layout software 
figures out which transistors to connect. First, your low level functions are 
connected together. For example, six transistors could be connected to create 
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a D flip-flop. These six transistors would be located physically very close to 
each other.  After your low level functions have been routed, these would in 
turn be connected together. The software would continue this process until 
the entire design is complete. This row and column structure is illustrated in 
Figure 1. 

The ASIC vendor manufactures many unrouted die which contain the 
arrays of gates and which it can use for any gate array customer. An integrated 
circuit consists of many layers of materials including semiconductor material 
(e.g., silicon), insulators (e.g., oxides), and conductors (e.g., metal). An 
unrouted die is processed with all of the layers except for the final metal 
layers that connect the gates together. Once your design is complete, the 
vendor simply needs to add the last metal layers to the die to create your chip, 
using photomasks for each metal layer. For this reason, it is sometimes 
referred to as a Masked Gate Array to differentiate it from a Field 
Programmable Gate Array. 

 
Figure 1 Masked Gate Array Architecture 

3. THE EVOLUTION OF PROGRAMMABLE DEVICES 
Programmable devices have gone through a long evolution to reach the 

complexity that they have today. The following sections give an approximately 
chronological discussion of these devices from least complex to most complex. 

3.1 Programmable Read Only Memories (PROMs) 
Programmable Read Only Memories, or PROMs, are simply memories that 

can be inexpensively programmed by the user to contain a specific pattern. 
This pattern can be used to represent a microprocessor program, a simple 
algorithm, or a state machine. Some PROMs can be programmed once only. 
Other PROMs, such as EPROMs or EEPROMs can be erased and programmed 
multiple times. 

PROMs are excellent for implementing any kind of combinatorial logic 
with a limited number of inputs and outputs. For sequential logic, external 
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clocked devices such as flip-flops or microprocessors must be added. Also, 
PROMs tend to be extremely slow, so they are not useful for applications where 
speed is an issue. 

3.2 Programmable Logic Arrays (PLAs) 
Programmable Logic Arrays (PLAs) were a solution to the speed and 

input limitations of PROMs. PLAs consist of a large number of inputs connected 
to an AND plane, where different combinations of signals can be logically 
ANDed together according to how the part is programmed. The outputs of the 
AND plane go into an OR plane, where the terms are ORed together in different 
combinations and finally outputs are produced. At the inputs and outputs there 
are typically inverters so that logical NOTs can be obtained. These devices can 
implement a large number of combinatorial functions, though not all possible 
combinations like a PROM can. However, they generally have many more inputs 
and are much faster. 

  

AND 
plane 

 

OR 
plane 

Inputs

Outputs 

 
Figure 2 PLA Architecture 

3.3 Programmable Array Logic (PALs) 
The Programmable Array Logic (PAL) is a variation of the PLA. Like the 

PLA, it has a wide, programmable AND plane for ANDing inputs together. 
However, the OR plane is fixed, limiting the number of terms that can be ORed 
together. Other basic logic devices, such as multiplexers, exclusive ORs, and 
latches are added to the inputs and outputs. Most importantly, clocked 
elements, typically flip-flops, are included. These devices are now able to 
implement a large number of logic functions including clocked sequential logic 
need for state machines. This was an important development that allowed 
PALs to replace much of the standard logic in many designs. PALs are also 
extremely fast. 
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Figure 3 PAL Architecture 

3.4 CPLDs and FPGAs 
Ideally, though, the hardware designer wanted something that gave him 

or her the flexibility and complexity of an ASIC but with the shorter turn-
around time of a programmable device. The solution came in the form of two 
new devices - the Complex Programmable Logic Device (CPLD) and the Field 
Programmable Gate Array. As can be seen in Figure 4, CPLDs and FPGAs bridge 
the gap between PALs and Gate Arrays. CPLDs are as fast as PALs but more 
complex. FPGAs approach the complexity of Gate Arrays but are still 
programmable. 

 
Figure 4 Comparison of CPLDs and FPGAs 

3.5 Complex Programmable Logic Devices (CPLDs) 
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Complex Programmable Logic Devices (CPLDs) are exactly what they 
claim to be. Essentially they are designed to appear just like a large number of 
PALs in a single chip, connected to each other through a crosspoint switch 
They use the same development tools and programmers, and are based on the 
same technologies, but they can handle much more complex logic and more of 
it. 

3.5.1 CPLD Architectures 
The diagram in Figure 5 shows the internal architecture of a typical 

CPLD. While each manufacturer has a different variation, in general they are 
all similar in that they consist of function blocks, input/output block, and an 
interconnect matrix. The devices are programmed using programmable 
elements that, depending on the technology of the manufacturer, can be 
EPROM cells, EEPROM cells, or Flash EPROM cells. 

 
Figure 5 CPLD Architecture 

3.5.1.1 Function Blocks 
A typical function block is shown in Figure 6.  The AND plane still exists 

as shown by the crossing wires. The AND plane can accept inputs from the I/O 
blocks, other function blocks, or feedback from the same function block. The 
terms and then ORed together using a fixed number of OR gates, and terms are 
selected via a large multiplexer. The outputs of the mux can then be sent 
straight out of the block, or through a clocked flip-flop. This particular block 
includes additional logic such as a selectable exclusive OR and a master reset 
signal, in addition to being able to program the polarity at different stages. 
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Usually, the function blocks are designed to be similar to existing PAL 
architectures, such as the 22V10, so that the designer can use familiar tools or 
even older designs without changing them.  

 

Figure 6 CPLD Function Block 

3.5.1.2 I/O Blocks 
Figure 7 shows a typical I/O block of a CPLD. The I/O block is used to 

drive signals to the pins of the CPLD device at the appropriate voltage levels 
with the appropriate current. Usually, a flip-flop is included, as shown in the 
figure. This is done on outputs so that clocked signals can be output directly to 
the pins without encountering significant delay. It is done for inputs so that 
there is not much delay on a signal before reaching a flip-flop, which would 
increase the device hold time requirement. Also, some small amount of logic is 
included in the I/O block simply to add some more resources to the device. 
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Figure 7 CPLD Input/Output Block 

3.5.1.3 Interconnect 
The CPLD interconnect is a very large programmable switch matrix that 

allows signals from all parts of the device go to all other parts of the device. 
While no switch can connect all internal function blocks to all other function 
blocks, there is enough flexibility to allow many combinations of connections. 

3.5.1.4 Programmable Elements 
Different manufacturers use different technologies to implement the 

programmable elements of a CPLD. The common technologies are Electrically 
Programmable Read Only Memory (EPROM), Electrically Erasable PROM 
(EEPROM) and Flash EPROM. These technologies are similar to, or next 
generation versions of, the technologies that were used for the simplest 
programmable devices, PROMs. 

3.5.2 CPLD Architecture Issues 
When considering a CPLD for use in a design, the following issues should 

be taken into account: 
1. The programming technology 

• EPROM, EEPROM, or Flash EPROM? This will determine the 
equipment needed to program the devices and whether they 
came be programmed only once or many times. 

2. The function block capability 
• How many function blocks are there in the device? 
• How many product and sum terms can be used? 
• What are the minimum and maximum delays through the logic? 
• What additional logic resources are there such as XNORs, 

ALUs, etc.? 
• What kinds of register controls are available (e.g., clock 

enable, reset, preset, polarity control)? How many are local 
inputs to the function block and how many are global, chip-
wide inputs? 

• What kind of clock drivers are in the device and what is the 
worst-case skew of the clock signal on the chip. This will help 
determine the maximum frequency at which the device can 
run. 

3. The I/O capability 
• How many I/O are independent, used for any function, and 

how many are dedicated for clock input, master reset, etc.? 
• What is the output drive capability in terms of voltage levels 
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and current? 
• What kind of logic is included in an I/O block that can be used 

to increase the functionality of the design? 

3.5.3 Example CPLD Families 
Some CPLD families from different vendors are listed below: 

• Altera MAX 7000 and MAX 9000 families 
• Atmel ATF and ATV families 
• Lattice ispLSI family 
• Lattice (Vantis) MACH family 
• Xilinx XC9500 family 

3.6 Field Programmable Gate Arrays (FPGAs) 
Field Programmable Gate Arrays are called this because rather than 

having a structure similar to a PAL or other programmable device, they are 
structured very much like a gate array ASIC. This makes FPGAs very nice for 
use in prototyping ASICs, or in places where and ASIC will eventually be used. 
For example, an FPGA maybe used in a design that needs to get to market 
quickly regardless of cost. Later an ASIC can be used in place of the FPGA when 
the production volume increases, in order to reduce cost. 

3.6.1 FPGA Architectures 
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Figure 8 FPGA Architecture 

Each FPGA vendor has its own FPGA architecture, but in general terms 
they are all a variation of that shown in Figure 8. The architecture consists of 
configurable logic blocks, configurable I/O blocks, and programmable 
interconnect. Also, there will be clock circuitry for driving the clock signals to 
each logic block, and additional logic resources such as ALUs, memory, and 
decoders may be available. The two basic types of programmable elements for 
an FPGA are Static RAM and anti-fuses. 

3.6.1.1 Configurable Logic Blocks 
Configurable Logic Blocks contain the logic for the FPGA. In a large-grain 

architecture, these CLBs will contain enough logic to create a small state 
machine. In a fine-grain architecture, more like a true gate array ASIC, the CLB 
will contain only very basic logic. The diagram in Figure 9 would be considered 
a large grain block. It contains RAM for creating arbitrary combinatorial logic 
functions, also known as lookup tables (LUTs). It also contains flip-flops for 
clocked storage elements, and multiplexers in order to route the logic within 
the block and to and from external resources. The muxes also allow polarity 
selection and reset and clear input selection. 
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Figure 9 FPGA Configurable Logic Block 

3.6.1.2 Configurable I/O Blocks 
A Configurable I/O Block, shown in Figure 10, is used to bring signals 

onto the chip and send them back off again. It consists of an input buffer and 
an output buffer with three state and open collector output controls. Typically 
there are pull up resistors on the outputs and sometimes pull down resistors. 
The polarity of the output can usually be programmed for active high or active 
low output and often the slew rate of the output can be programmed for fast 
or slow rise and fall times. In addition, there is often a flip-flop on outputs so 
that clocked signals can be output directly to the pins without encountering 
significant delay. It is done for inputs so that there is not much delay on a 
signal before reaching a flip-flop, which would increase the device hold time 
requirement. 
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Figure 10 FPGA Configurable I/O Block 

3.6.1.3 Programmable Interconnect 
The interconnect of an FPGA is very different than that of a CPLD, but is 

rather similar to that of a gate array ASIC. In Figure 11, a hierarchy of 
interconnect resources can be seen. There are long lines that can be used to 
connect critical CLBs that are physically far from each other on the chip 
without inducing much delay. They can also be used as buses within the chip. 
There are also short lines that are used to connect individual CLBs that are 
located physically close to each other. There are often one or several switch 
matrices, like that in a CPLD, to connect these long and short lines together in 
specific ways. Programmable switches inside the chip allow the connection of 
CLBs to interconnect lines and interconnect lines to each other and to the 
switch matrix. Three-state buffers are used to connect many CLBs to a long 
line, creating a bus. Special long lines, called global clock lines, are specially 
designed for low impedance and thus fast propagation times. These are 
connected to the clock buffers and to each clocked element in each CLB. This 
is how the clocks are distributed throughout the FPGA. 
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Figure 11 FPGA Programmable Interconnect 

3.6.1.4 Clock Circuitry 
Special I/O blocks with special high drive clock buffers, known as clock 

drivers, are distributed around the chip. These buffers connect to clock input 
pads and drive the clock signals onto the global clock lines described above. 
These clock lines are designed for low skew times and fast propagation times. 
As we will discuss later, synchronous design is a must with FPGAs, since 
absolute skew and delay cannot be guaranteed. Only when using clock signals 
from clock buffers can the relative delays and skew times be guaranteed. 

3.6.2 Small vs. Large Granularity 
Small grain FPGAs resemble ASIC gate arrays in that the CLBs contain 

only small, very basic elements such as NAND gates, NOR gates, etc. The 
philosophy is that small elements can be connected to make larger functions 
without wasting too much logic. In a large-grain FPGA, where the CLB can 
contain two or more flip-flops, a design that does not need many flip-flops will 
leave many of them unused. Unfortunately, small grain architectures require 
much more routing resources, which take up space and insert a large amount 
of delay which can more than compensate for the better utilization.  

 
Small Granularity Large Granularity 
better utilization fewer levels of logic 
direct conversion to ASIC less interconnect delay 
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Table 1 Small vs. Large Grain FPGAs 

A comparison of advantages of each type of architecture is shown in 
Table 1 above. The choice of which architecture to use is dependent on your 
specific application. 

3.6.3 SRAM vs. Anti-fuse Programming 
There are two competing methods of programming FPGAs. The first, 

SRAM programming, involves small Static RAM bits for each programming 
element. Writing the bit with a zero turns off a switch, while writing with a 
one turns on a switch. The other method involves anti-fuses, which consist of 
microscopic structures that, unlike a regular fuse, normally make no 
connection. A certain amount of current during programming of the device 
causes the two sides of the anti-fuse to connect. 

The advantages of SRAM based FPGAs is that they use a standard 
fabrication process that chip fabrication plants are familiar with and are 
always optimizing for better performance. Since the SRAMs are 
reprogrammable, the FPGAs can be reprogrammed any number of times, even 
while they are in the system, just like writing to a normal SRAM. SRAM based 
devices can easily use the internal SRAMs as small memories in the design. The 
disadvantages are that they are volatile, which means a power glitch could 
potentially change it. Also, SRAM-based devices have large routing delays. 

The advantages of Anti-fuse based FPGAs are that they are non-volatile 
and the delays due to routing are very small, so they tend to be faster. 
Antifuse based FPGAs tend to require lower power and they are better for 
keeping your design information out of the hands of competitors because they 
do not require an external device to program them upon power-up as SRAM 
based devices do. The disadvantages are that they require a complex 
fabrication process, they require an external programmer to program them, 
and once they are programmed, they cannot be changed. 

3.6.4 Example FPGA Families 
Examples of SRAM based FPGA families include the following: 

• Altera FLEX family 
• Atmel AT6000 and AT40K families 
• Lucent Technologies ORCA family 
• Xilinx XC4000 and Virtex families 

Examples of Anti-fuse based FPGA families include the following: 
• Actel SX and MX families 
• Quicklogic pASIC family 

3.7 Choosing Between CPLDs and FPGAs 
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Choosing between a CPLD and an FPGA will depend on the 
characteristics and requirements of your project. A summary of the 
characteristics of each is show in Figure 12 below. 

 
 CPLD FPGA 
Architecture PAL-like Gate Array-like 
Density Low to medium 

12 22V10s or more 
Medium to high 

up to 1 million gates 
Speed Fast, predictable Application dependent 
Interconnect Crossbar Routing 
Power Consumption High Medium 

Figure 12 CPLDs vs. FPGAs 

4. DESIGN ISSUES 
In the next sections of this paper, we will discuss those areas that are 

unique to FPGA design or that are particularly critical to these devices. 

4.1 Top-Down Design 
Top-down design is the design method whereby high level functions are 

defined first, and the lower level implementation details are filled in later. A 
schematic can be viewed as a hierarchical tree as shown in Figure 13. The top 
level block represents the entire chip. Each lower level block represents major 
functions of the chip. Intermediate level blocks may contain smaller 
functionality blocks combined with gate-level logic.  The bottom level contains 
only gates and macrofunctions, which are vendor-supplied high-level functions. 
Fortunately, schematic capture software and hardware description languages 
used for chip design easily allow use of the top-down design methodology. 
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Figure 13 Top-Down Design 

Top-down design is the preferred methodology for chip design for 
several reasons. First, chips often incorporate a large number of gates and a 
very high level of functionality. This methodology simplifies the design task 
and allows more than one engineer, when necessary, to design the chip. 
Second, it allows flexibility in the design. Sections can be removed and 
replaced with higher-performance or optimized designs without affecting other 
sections of the chip. 

Also important is the fact that simulation is much simplified using this 
design methodology. Simulation is an extremely important consideration in 
chip design since a chip cannot be blue-wired after production. For this 
reason, simulation must be done extensively before the chip is sent for 
fabrication. A top-down design approach allows each module to be simulated 
independently from the rest of the design. This is important for complex 
designs where an entire design can take weeks to simulate and days to debug. 
Simulation is discussed in more detail later in this paper. 

4.2 Keep the Architecture in Mind 
Look at the particular architecture to determine which logic devices fit 

best into it. The vendor may be able to offer advice about this. Many synthesis 
packages can target their results to a specific FPGA or CPLD family from a 
specific vendor, taking advantage of the architecture to provide you with 
faster, more optimal designs. 

4.3 Synchronous Design 
One of the most important concepts in chip design, and one of the 

hardest to enforce on novice chip designers, is that of synchronous design. 
Once a chip designer uncovers a problem due to asynchronous design and 
attempts to fix it, he or she usually becomes an evangelical convert to 
synchronous design. This is because asynchronous design problems are due to 
marginal timing problems that may appear intermittently, or may appear only 
when the vendor changes its semiconductor process. Asynchronous designs that 
work for years in one process may suddenly fail when the chip is manufactured 
using a newer process. 

Synchronous design simply means that all data is passed through 
combinatorial logic and flip-flops that are synchronized to a single clock. Delay 
is always controlled by flip-flops, not combinatorial logic. No signal that is 
generated by combinatorial logic can be fed back to the same group of 
combinatorial logic without first going through a synchronizing flip-flop. Clocks 
cannot be gated - in other words, clocks must go directly to the clock inputs of 
the flip-flops without going through any combinatorial logic. 
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The following sections cover common asynchronous design problems and 
how to fix them using synchronous logic. 

4.3.1 Race conditions 
Figure 14 shows an asynchronous race condition where a clock signal is 

used to reset a flip-flop. When SIG2 is low, the flip-flop is reset to a low state. 
On the rising edge of SIG2, the designer wants the output to change to the high 
state of SIG1. Unfortunately, since we don’t know the exact internal timing of 
the flip-flop or the routing delay of the signal to the clock versus the reset 
input, we cannot know which signal will arrive first - the clock or the reset. 
This is a race condition. If the clock rising edge appears first, the output will 
remain low. If the reset signal appears first, the output will go high. A slight 
change in temperature, voltage, or process may cause a chip that works 
correctly to suddenly work incorrectly. A more reliable synchronous solution is 
shown in Figure 15. Here a faster clock is used, and the flip-flop is reset on the 
rising edge of the clock. This circuit performs the same function, but as long as 
SIG1 and SIG2 are produced synchronously - they change only after the rising 
edge of CLK - there is no race condition. 

D

CLK

Q

CLR

SIG1

SIG2

OUT

SIG1

SIG2

OUT  
Figure 14 Asynchronous: Race Condition 
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Figure 15 Synchronous: No Race Condition 

4.3.2 Delay dependent logic 
Figure 16 shows logic used to create a pulse. The pulse width depends 

very explicitly on the delay of the individual logic gates. If the process should 
change, making the delay shorter, the pulse width will shorten also, to the 
point where the logic that it feeds may not recognize it at all. A synchronous 
pulse generator is shown in Figure 17. This pulse depends only on the clock 
period. Changes to the process will not cause any significant change in the 
pulse width. 
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Z
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Figure 16 Asynchronous: Delay Dependent Logic 
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Figure 17 Synchronous: Delay Independent Logic 

4.3.3 Hold time violations 
Figure 18 shows an asynchronous circuit with a hold time violation. Hold 

time violations occur when data changes around the same time as the clock 
edge. It is uncertain which value will be registered by the clock. The circuit in 
Figure 19 fixes this problem by putting both flip-flops on the same clock and 
using a flip-flop with an enable input. A pulse generator creates a pulse that 
enables the flip-flop. 
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Q
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Figure 18 Asynchronous: Hold Time Violation 
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Figure 19 Synchronous: No Hold Time Violation 

4.3.4 Glitches 
A glitch can occur due to small delays in a circuit such as that shown in 

Figure 20. An inverting multiplexer contains a glitch when switching between 
two signals, both of which are high. Yet due to the delay in the inverter, the 
output goes high for a very short time. Synchronizing this output by sending it 
through a flip-flop as shown in Figure 21, ensures that this glitch will not 
appear on the output and will not affect logic further downstream. 

D0

D1

SEL SEL

D0

SEL

D1

SEL

Z

Z
glitch

 
Figure 20 Asynchronous: Glitch 
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Figure 21 Synchronous: No Glitch 

4.3.5 Bad clocking 
Figure 22 shows an example of asynchronous clocking. This kind of 

clocking will produce problems of the type discussed previously. The correct 
way to enable and disable outputs is not by putting logic on the clock input, 
but by putting logic on the data input as shown in Figure 23. 

CLK

D

CLK

Q
OUTDATA

GATE

 
Figure 22 Asynchronous: Bad Clocking 
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Figure 23 Synchronous: Good Clocking 

4.3.6 Metastability 
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Figure 24 Metastability - The Problem 

One of the great buzzwords, and often-misunderstood concepts, of 
synchronous design is metastability. Metastability refers to a condition that 
arises when an asynchronous signal is clocked into a synchronous flip-flop. 
While chip designers would prefer a completely synchronous world, the 
unfortunate fact is that signals coming into a chip will depend on a user 
pushing a button or an interrupt from a processor, or will be generated by a 
clock that is different from the one used by the chip. In these cases, the 
asynchronous signal must be synchronized to the chip clock so that it can be 
used by the internal circuitry. The designer must be careful how to do this in 
order to avoid metastability problems as shown in Figure 24. If the ASYNC_IN 
signal goes high around the same time as the clock, we have an unavoidable 
race condition. The output of the flip-flop can actually go to an undefined 
voltage level that is somewhere between a logic 0 and logic 1. This is because 
an internal transistor did not have enough time to fully charge to the correct 
level. This metalevel may remain until the transistor voltage leaks off or 
“decays”, or until the next clock cycle. During the clock cycle, the gates that 
are connected to the output of the flip-flop may interpret this level 
differently. In the figure, the upper gate sees the level as a logic 1 whereas the 
lower gate sees it as a logic 0. In normal operation, OUT1 and OUT2 should 
always be the same value. In this case, they are not and this could send the 
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logic into an unexpected state from which it may never return. This 
metastability can permanently lock up your chip. 
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Figure 25 Metastability - The "Solution" 

The “solution” to this metastability problem is shown in Figure 25. By 
placing a synchronizer flip-flop in front of the logic, the synchronized input will 
be sampled by only one device, the second flip-flop, and be interpreted only as 
a logic 0 or 1. The upper and lower gates will both sample the same logic level, 
and the metastability problem is avoided. Or is it? The word solution is in 
quotation marks for a very good reason. There is a very small but non-zero 
probability that the output of the synchronizer flip-flop will not decay to a 
valid logic level within one clock period. In this case, the next flip-flop will 
sample an indeterminate value, and there is again a possibility that the output 
of that flip-flop will be indeterminate. At higher frequencies, this possibility is 
greater. Unfortunately, there is no certain solution to this problem. Some 
vendors provide special synchronizer flip-flops whose output transistors decay 
very quickly. Also, inserting more synchronizer flip-flops reduces the 
probability of metastability but it will never reduce it to zero. The correct 
action involves discussing metastability problems with the vendor, and 
including enough synchronizing flip-flops to reduce the probability so that it is 
unlikely to occur within the lifetime of the product. 

Notice that each synchronizer flip-flop may delay the logic level change 
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on the input by one clock cycle before it is recognized by the internal circuitry 
of the chip. Given that the external signal is asynchronous, by definition this is 
not a problem since the exact time that it is asserted will not be deterministic. 
If this delay is a problem, then most likely the entire system will need to be 
synchronized to a single clock. 

4.3.7 Allowable uses of asynchronous logic 
Now that I’ve gone through a long argument against asynchronous 

design, I will tell you the few exceptions that I have found to this rule. These 
exceptions, however, must be designed with extreme caution and only as a last 
resort when a synchronous solution cannot be found. 

4.3.7.1 Asynchronous reset 
There are times when an asynchronous reset is acceptable, or even 

preferred. If the vendor’s library includes asynchronously reset-able flip-flops, 
the reset input can be tied to a master reset in order to reduce the routing 
congestion and to reduce the logic required for a synchronous reset. FPGAs and 
CPLDs will typically have master reset signals built into the architecture. Using 
these signals to reset state machines frees up interconnect for other uses. 

Asynchronous reset should be used only for resetting the entire chip and 
should not occur during normal functioning of the chip. After reset, you must 
ensure that the chip is in a stable state such that no flip-flops will change until 
an input changes. You must also ensure that the inputs to the chip are stable 
and will not change for at least one clock cycle after the reset is removed. 

4.3.7.2 Asynchronous latches on inputs 
Some buses, such as the VME bus, are designed to be asynchronous. In 

order to interface with these buses, it is necessary to use asynchronous latches 
to capture addresses or data. Once the data is captured, it must be 
synchronized to the internal clock. However, it is usually much more efficient 
to use asynchronous latches to capture the data initially. Unless your chip uses 
a clock that has a frequency much higher than that of the bus, attempting to 
synchronously latch these signals will cause a large amount of overhead and 
may actually produce timing problems rather than reduce them. 

4.4 Floating Nodes 
Floating nodes, or internal nodes of a circuit which are not continually 

driven, should be avoided. An example of a potential floating node is shown in 
Figure 26. If signals SEL_A and SEL_B are both not asserted, signal OUT will 
float to an unknown level. Downstream logic may interpret OUT as a logic 1, a 
logic 0, or it may produce a metastable state. In addition, any CMOS circuitry 
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that has OUT as an input will use up power since CMOS uses power when the 
input is in the threshold region. 

 
Figure 26 Floating Nodes - The Problem 

Two solutions to the floating node problem are shown in Figure 27. At 
the top, signal OUT is pulled up using an internal pull-up resistor. This ensures 
that when both select signals are not asserted, OUT will be pulled to a good 
logic level. The other solution, shown at the bottom of the figure, is to make 
sure that something is driving the output at all times. A third select is 
generated which drives the output to a good level when neither of the select 
signals is asserted. 

 
Figure 27 Floating Nodes - Solutions 

4.5 Bus Contention 
Bus contention occurs when two outputs drive the same signal at the 

same time as shown in Figure 28. For obvious reasons, this is bad and reduces 
the reliability of the chip. If bus contention occurs even for short times during 
a clock cycle, after many clock cycles the possibility of damage to one of the 
drivers increases. The solution is to ensure that both drivers cannot be 
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asserted simultaneously. This can be accomplished by inserting additional logic 
as shown in Figure 29. The ideal solution is to avoid tri-state drivers 
altogether, and use muxes whenever possible. 

 
Figure 28 Bus Contention - The Problem 

 
Figure 29 Bus Contention - The Solution 

4.6 One-Hot State Encoding 
For large grain FPGAs, which are the majority of architectures available, 

the normal method of designing state machines is not optimal. This is because 
the each CLB in an FPGA has one or more flip-flops, making for an abundance 
of flip-flops. For large combinatorial logic terms, however, many CLBs are 
often involved which means connecting these CLBs through slow interconnect. 
A typical state machine design, like the one shown in Figure 30, uses few flip-
flops and much combinatorial logic. This is good for ASICs, bad for FPGAs. 
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Figure 30 State Machine: Usual Method 

The better method of designing state machines for FPGAs is known as 
one-hot encoding, seen in Figure 31. Using this method, each state is 
represented by a single flip-flop, rather than encoded from several flip-flop 
outputs. This greatly reduces the combinatorial logic, since only one bit needs 
to be checked to see if the state machine is in a particular state. It is 
important to note that each state bit flip-flop needs to be reset when 
initialized, except for the IDLE state flip-flop that needs to be set so that the 
state machine begins in the IDLE state. 

 
Figure 31 State Machine: One-Hot Encoding 
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5. DESIGN FOR TEST (DFT) 
“Design for test” is a concept that means your chip is designed in such a 

way that testing it is easy. Test logic plays two roles. First, it helps debug a 
chip that has design flaws. Second, it can catch manufacturing problems. Both 
are particularly important for ASIC design because of the black box nature of 
ASICs where internal nodes are simply not accessible to you when there is a 
problem. These techniques are also applicable to CPLDs and FPGAs, many of 
which already have built-in test features. The following DFT techniques allow 
for better testing of a chip. While not all of these techniques need to be 
included in your design, those that are needed should be included at design 
time. DFT techniques should be taken into account during the design process 
rather than afterwards. Otherwise, circuits can be designed that are later 
found to be difficult, if not impossible, to test. 

One important consideration that can be overlooked is that test logic is 
intended to increase the testability and reliability of your chip. If test logic 
becomes too large, it can actually decrease reliability because the test logic 
can itself have problems that cause the chip to malfunction. A rule of thumb is 
that test circuitry should not make up more than 10% of the logic of the entire 
chip. Similarly, if you spend more than 10% of your time designing and 
simulating your test logic independently of the functionality of the chip, then 
you have more test circuitry than you need. 

5.1 Testing Redundant Logic 
The top of Figure 32 shows a circuit that has duplicated logic in order to 

increase the reliability of the design. However, since the circuit is not 
testable, the effect is not as useful as it could be. The circuit on the bottom 
shows how test lines can be added to allow the entire circuit to be tested. 

 
Figure 32 Testing Redundant Logic 

5.2 Initializing State Machines 
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It is important that all state machines, and in fact all registers in your 
design be able to be initialized. This ensures that if a problem arises, the chip 
can be put into a known state from which to begin debugging. Also, for 
simulation purposes, simulation software needs to start out from a known state 
before useful results can be obtained. 

5.3 Observable Nodes 
As many nodes as possible in your chip design should be observable. In 

other words, it should be possible to determine the values of these nodes using 
the I/O pins of the chip. On the left side of Figure 33, an unobservable state 
machine is shown. On the right side, the state machine has been made 
observable by taking each state machine through a mux to an external pin. 
Test signals can be used to select which output is being observed. If no pins are 
available, the state bits can be muxed onto an existing pin that, during testing, 
is used to observe the state machine. This allows for much easier debugging of 
internal state machines. 

 
Figure 33 Observable Nodes 

5.4 Scan Techniques 
Scan techniques, shown in Figure 34, allow the nodes of the chip to be 

scanned out so that they can be observed externally. There are two main scan 
techniques - full scan and boundary scan. Full scan is extremely flexible, 
especially since it can also allow values to be scanned into the chip so that you 
can start it from a known state. This is particularly useful if a problem occurs 
only after the chip has been operating for a long time. A state can be quickly 
scanned into the chip that corresponds to the state that would normally be 
reached after a long time in operation. The drawback of scan techniques is 
that they require a lot of software development to support. Also, if states are 
scanned into the chip, you must be careful not to scan in illegal states. It is 
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possible to turn on multiple drivers to a single net internally which would 
normally not happen, but which would burn out the chip. Similarly, outputs 
must be disabled while the chip is being scanned since dangerous combinations 
of outputs may be asserted that can harm your system. There are other 
considerations, also, such as what to do with the clock and what to do with the 
rest of the system while the chip is being scanned. 

 
Figure 34 Scan Methodology 

Boundary scan is somewhat easier to implement and does not add as 
much logic to the entire chip design. Boundary scan only scans nodes around 
the boundary of the chip, but not internal nodes. In this way, internal 
contention problems are avoided, although contention problems with the rest 
of the system still need to be considered. Boundary scan is also useful for 
testing the rest of your system, since the outputs can be toggled and the effect 
on the rest of the system observed. 

5.5 Built-In Self Test 

 
Figure 35 Built-In Self Test 

Another method of testing your chip is to put all of the test circuitry on 
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the chip in such a way that the chip tests itself. This is called built-in self test 
or BIST. In this case, some circuitry inside the chip can be activated by 
asserting a special input or combination of inputs. This circuitry then runs a 
series of test on the chip. If the result of the tests does not match the 
expected result, the chip signals that there is a problem. The details of what 
type of tests to run and how to signal a good or bad chip is left up to the 
designer. 

5.6 Signature Analysis 
Signature analysis involves putting a pseudo-random sequence of ones 

and zeroes into the chip and noting the ones and zeroes that come out. This 
output sequence is referred to as the chip’s signature. This type of testing can 
be accomplished with the chip in a normal mode of operation, but is usually 
performed in scan mode as described above. By repeating the same pseudo-
random series of bits, the resulting signature should be the same for each chip. 
Any chip that produces an incorrect signature is a bad chip. This type of testing 
is probabilistic and assumes that a pseudo-random sequence of events has a 
good chance of catching errors, which may not be true. However, it requires 
very little hardware to implement and can be used as a simple form of BIST. 

6. SIMULATION ISSUES 
Perhaps the most important phase of chip design, and the most often 

overlooked phase, is that of simulation. Simulation can save many frustrating 
hours debugging a chip in your system. Doing a good job at simulation uncovers 
errors before they are set in silicon, and can help determine that your chip will 
function correctly in your system. 

There are two main aspects of your design for which simulation is used 
to determine correctness - functionality and timing. Functionality refers to 
how the chip functions as a whole, and how it functions in your system. A chip 
that is designed to function as an Ethernet controller may function correctly on 
its own. In a system that requires an ATM controller, for example, it will not 
work at all. It is important to look not only at the functionality of the chip as 
an independent design, but also to test its functionality within the system in 
which it will be incorporated. 

The second aspect of your design which simulation examines is timing. 
Will your chip meet all of its timing requirements under all possible conditions? 
Are there any race conditions? Are the setup and hold time requirements met 
for each flip-flop? Do the I/O signals of the chip meet the timing requirements 
of the system? The following sections discuss ways of using timing to determine 
both correct functionality and correct timing. 
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6.1.1 Functional Simulation 
Functional simulation involves simulating the functionality of a device 

without taking the timing of the device into account. This type of simulation is 
important initially in order to get as many bugs out of the device as possible 
and to determine that the chip will work correctly in your system. During the 
first phases of simulation, you shouldn’t be very concerned about timing 
because it will change as the design changes. In fact, the final timing will not 
be known precisely until the layout is complete. Of course you need to know 
initially that, in general, the timing of the chip process can support the speed 
and the I/O requirements of your design. 

When performing functional simulation, a rough estimate of the amount 
of simulation to perform is called toggle coverage, which measures the 
percentage of flip-flops in the chip that change state during simulation from 0 
to 1 and 1 to 0. Many simulation packages will give you a number for the toggle 
coverage, and you should have 100 percent coverage before feeling good about 
the amount of simulation. This coverage can still leave many potential faults 
uncovered, but it signifies that each state machine has been simulated and no 
part of the circuit has gone unexamined. 

Toggle coverage is primarily used for schematic based designs, which are 
rare these days. The equivalent check for designs using HDLs is called code 
coverage, which measures the percentage of possible code statement branches 
that have been executed. In other words, an assignment statement is 
completely covered if it is executed at all, while a branch statement is 
completely covered if all possible branches are taken during the simulation. 

6.1.2 Static Timing Analysis 
Static timing analysis is a process that looks at a synchronous design and 

determines the highest operating frequency of the design that does not violate 
any setup and hold times. You can also use the static timing analysis software 
to specify a specific frequency, and the tool will list all paths that violate the 
timing requirements. These paths can then be adjusted to meet your 
requirements. Any asynchronous parts of your design (they should be few, if 
any) must be examined by hand. 

Static timing analysis, or some sort of timing analysis must be performed 
immediately before layout of your chip. At this point, the timing numbers will 
be estimates that take expected trace lengths into account. After layout, 
timing analysis must be performed again to determine that the real chip, with 
real trace lengths and delays, still meets you timing requirements. 

6.1.3 Timing Simulation 
This method of timing analysis is growing less and less popular. It 
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involves including timing information in a functional simulation so that the real 
behavior of the chip is simulated. The advantage of this kind of simulation is 
that timing and functional problems can be examined and corrected. Also, 
asynchronous designs must use this type of analysis because static timing 
analysis only works for synchronous designs. This is another reason for 
designing synchronous chips only. 

As chips become larger, though, this type of compute-intensive 
simulation takes longer and longer to run. Also, simulations can miss particular 
transitions that result in worst-case results. This means that certain long delay 
paths never get evaluated and a chip with timing problems can pass timing 
simulation. If you do need to perform timing simulation, it is important to do 
both worst-case simulation and best-case simulation. The term “best-case” can 
be misleading. It refers to a chip that, due to voltage, temperature, and 
process variations, is operating faster than the typical chip. However, hold 
time problems become apparent only during the best-case conditions. 

7. EMERGING TECHNOLOGIES 

7.1 Cores 
By a “core” we are simply referring to the basic function, excluding any 

extraneous circuits like I/O buffers that would be found on a processor chip. 
There are two types of cores. The soft core, known as an IP core, is a function 
that is described by its logic function rather than by any physical 
implementation. Cores usually consist of HDL code. Hard cores, on the other 
hand, consist of physical implementations of a function. With respect to CPLDs 
and FPGAs, these hard cores are known as embedded cores because they are 
physically embedded onto the die and surrounded by programmable logic. 

Many of the FPGA and CPLD vendors have begun offering cores. As the 
density of programmable devices increases, it is enabling what is called a 
System on a Programmable Chip (SOPC). In other words, whereas 
programmable devices were initially developed to replace glue logic, entire 
systems can now be placed on a single programmable device. Systems consist 
of all kinds of complicated devices like processors. In order to place these 
complex functions within a programmable device, there are three options — 
design the function yourself, purchase the HDL code for the function and 
incorporate it into your HDL code, or get the vendor to include the function as 
a cell in the programmable device. The second option is the IP core while the 
third option is the embedded core. 

7.1.1 IP Cores 
IP cores are often sold by third party vendors that specialize in creating 
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these functions. Recently, CPLD and FPGA vendors have begun offering their 
own soft cores. IP cores reduce the time and manpower requirements for the 
FPGA designer. IP cores have already been designed, characterized, and 
verified. Also, IP cores can often be modifiable, meaning that you can add or 
subtract functionality to suit your needs. 

But IP cores may also be expensive. IP cores can be optimized to a 
certain degree, but the complete optimization depends on its use in a 
particular device and also depends on the logic to which it is connected. Such 
IP purchased from a third party may not be optimized for your particular CPLD 
or FPGA vendor. You may not be able to meet your speed or power 
requirements, especially after you have placed and routed it. 

7.1.2 Embedded Cores 
The embedded core is in many ways ideal for users, which is one reason 

why programmable device vendors are now offering embedded cores in their 
devices. The embedded core will be optimized for the vendor’s process to give 
you good timing and power consumption numbers. The function will be placed 
as a single cell on the silicon die and so the performance of the function will 
not depend on the rest of your design since it will not need to be placed and 
routed. 

Some embedded cores are analog devices that cannot be designed into 
an ordinary CPLD or FPGA. By integrating these functions into the device, you 
can avoid the difficult process of designing analog devices, and you save the 
chips and components that would otherwise be required outside the 
programmable device. 

Of course there is a drawback to embedded cores. By using an 
embedded core in your programmable device, you tie your design into a single 
vendor. Unless another vendor offers the same embedded core, which is 
unlikely, switching to another vendor will require a large effort and will not be 
pleasant. 

Another reason for offering embedded cores is a business reason. There 
are essentially two major players in the CPLD and FPGA markets — Xilinx and 
Altera. The smaller players have tried for years to compete with the result, 
generally, that their market share has remained flat or shrunk. In order for the 
smaller vendors to differentiate themselves from the big two, they need to 
find a niche market that they can dominate. These niche markets support 
those designs that need a very specific function. I should say that these niche 
markets might turn out to be very big. However, it is a bet-the-house risk, 
especially for the smaller companies. If a small company puts a lot of resources 
into developing and marketing a programmable device that includes a specific 
processor that ends up being designed into every personal computer, then that 
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vendor can see a significant amount of sales. But if the vendor bets on the 
wrong processor, they could lose a huge amount of R&D money and get little 
revenue in return. This isn’t as big a risk for the large vendors because they 
have more resources, more sales channels, and more cash to quickly change 
directions and develop new families of devices. 

7.1.3 Processor cores 
Processor cores are one of the types of cores commonly available as IP 

cores or embedded cores. These processors tend to be those that are designed 
for embedded systems since, almost by definition, programmable devices are 
embedded systems. 

If the processor core is embedded, you will be using a processor that has 
been optimized and has predictable timing and power consumption numbers. 
For either type of core, tools will be readily available for software 
development. Off-the-shelf cross compilers and simulators can be used to 
debug code before the design has been completed and the programmable 
device is available. 

An example of an FPGA with an embedded processor, along with other 
embedded cores, is shown in Figure 36. 

 

Figure 36 FPGA with embedded processor core 
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7.1.4 DSP cores 
Digital Signal Processors (DSPs) are another common type of core that is 

offered as an IP core or an embedded core. These are essentially specialized 
processors that are used for manipulating analog signals. They are commonly 
used for filtering and compression of video or audio signals. Many engineers 
have argued that as general processors become faster, DSPs will be less useful 
because the same functions can be accomplished on the generic processors. 
However video and audio digitization, compression, and filtering requirements 
have increased in recent years as millions of users connect to the Internet and 
regularly upload and download all kinds of information over relatively limited 
bandwidth connections. So far, DSP demand for use in networking and graphics 
devices has been increasing, not decreasing. 

7.1.5 Embedded PHY cores 
PHY cores are the analog circuitry that drives networks. Many companies 

are now integrating this functionality onto their devices. Because these devices 
include specialized analog circuitry, they are available only as embedded 
cores. 

 

Figure 37 FPGA with embedded PHY core 

In the late nineties, during the heyday of the Internet, networking 
companies were springing up all over. In order to save design time, these 
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companies could use FPGAs with PHY cores built in. Unfortunately, this boom 
didn’t last and some networking technologies did not find the mass acceptance 
that was predicted. For engineers designing an interface to a specific type of 
network, an FPGA with the appropriate PHY core can be a very good resource. 
For the programmable device vendor, it can be something of a risk to support a 
particular PHY core that may not end up being the standard that they expect 
or have the mass-market acceptance that they are counting on. 

Figure 37 shows an example of an FPGA with an embedded PHY core 
that can be programmed to interface to a variety of different networks. 

7.2 Special I/O drivers 
Special I/O drivers are now being embedded into programmable devices. 

The newer buses inside personal computers need to be driven by special high-
drive, impedance-matched circuits. They need to have inputs with very 
specific voltage threshold values. Many vendors now offer programmable 
devices with I/O that meet these special requirements. Many times, this is the 
only way to design a programmable device that can interface with these 
devices. 

7.3 New Architectures 
New architectures are being developed for CPLDs and FPGAs. There are 

still occasional attempts to create a fine grain architecture where the logic 
blocks consist of small logic functions. Most of these attempts, I believe, are 
doomed to failure because routing is still the main constraint in any FPGA. Fine 
grain architectures require more routing than large grain architectures. 

One type of architecture that is being developed for FPGAs has a logic 
block that it based on a DSP. In Figure 38, we see such a logic block. This type 
of FPGA will be better for use in chips that need a significant amount of signal 
processing. I have certain doubts about this future path, though. First, the 
majority of programmable devices do not perform any DSP, so this architecture 
targets a relatively small market. Second, special tools will be needed to 
convert digital signaling algorithms for use in such a specialized FPGA. These 
tools will need to optimize the algorithm very well so that performance in this 
specialized FPGA can actually perform better than a standard DSP, or a generic 
processor, running code that has been optimized using tools and compilers that 
have been available for years. 
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Figure 38 DSP core cell in an FPGA 

7.4 ASICs with embedded FPGA cells 
A relatively new concept that has taken hold in the imaginations of some 

established FPGA vendors and some new startup companies is to embed FPGAs 
into ASICs. There are two ways of doing this. One way is to create small 
programmable cells of logic that can be used in an ASIC. These cells would be 
similar to the configurable logic blocks of an FPGA and could be placed, along 
with hard logic cells, anywhere on an ASIC. The other way is to embed an FPGA 
core into an ASIC and allow logic to be placed around this core. 

The technology of providing FPGA cells for ASIC designs is an interesting 
one. I don’t have a good feel for the size of this market, though I feel that 
there definitely is a market. There are several specific areas where I see 
potential. 

1. Cost reduction. For engineers who are already designing systems 
that include both ASICs and FPGAs, putting FPGA cells inside the ASIC 
combines multiple chips into one hybrid chip. This will result in a 
significant cost savings by eliminating chips. For engineers who are 
considering a design that includes ASIC technology and FPGA 
technology, this solution saves PC board space, and the resulting 
hybrid chip will generally require fewer external pins because the 
ASIC/FPGA interface is now inside the chip. Smaller PC boards results 
in lower cost. More importantly, lower pin count on a chip results in 
significantly lower costs because package size is a large percentage 
of the overall per-piece cost of an ASIC. 

2. Changing communication protocols. We've already seen flash 
memory technology used extensively in modem designs so that the 
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modems could be released before a communication protocol was 
finalized. This gave modem manufacturers that used this technology 
a head start in the market. When the protocol was finalized, the user 
simply needed to update the modem firmware. This technology can 
be used in switches and routers and other complicated 
communication devices in the same way. Network device 
manufacturers can ship devices before a protocol is fully defined. Of 
course, they can do that now using discrete FPGAs in their design, 
but this technology offers cost advantages by placing all logic, both 
fixed and flexible, onto a single chip. 

3. Bus interfaces and memory interfaces. These are other areas that 
are good candidates for this technology. The FPGA functionality 
allows the engineer to fine tune the logic while it is in the field. I 
believe that the opportunity for this kind of market exists for very 
new interfaces that may not be well defined or for which accurate 
simulation models don't yet exist. However, I also believe that 
accurate simulation models exist for older, well-defined interfaces 
and so the technology will not be applied as much for supporting 
these legacy interfaces. 

4. Architecture enhancements. One interesting idea that this 
technology further enables is the ability to make architectural 
changes after a product has been manufactured and shipped. In my 
experience, very little analysis of complex equipment is performed 
to locate performance bottlenecks. This technology enables changes 
to a system's architecture to be tested in the field. Those changes 
that resulted in better operation can be incorporated into the 
design. It may also be that different uses of a device may require 
different designs. A device can be customized for particular 
customers based on their environment and requirements. 

5. Reconfigurable computing. The concept of using FPGA devices to 
perform some of the algorithmic work of a general-purpose computer 
has excited researchers for several years. Currently, the work is 
mostly confined to universities and R&D labs because of the 
complexity and challenges from the design of the software and the 
hardware. In particular, it has been difficult to develop compilers or 
interpreters that can take general algorithms, written in general 
programming languages like C, and map the functionality onto 
reconfigurable hardware. Should these issues be resolved, and 
reconfigurable computing becomes successful, this technology could 
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be an ideal platform for it because it enables the tight integration of 
high-speed logic and reconfigurable logic on the same chip. 

The example in Figure 39 shows a block diagram of an implementation 
of a 32-tap FIR filter. The shaded blocks are implemented in FPGA cells while 
the unshaded blocks are implemented in ASIC cells. The RAM is much easier to 
implement, and more efficient to implement, as a RAM cell than in an FPGA. 
By implementing the Address Generator and ROM in FPGA cells, the algorithm 
can easily be reprogrammed. 

 

Figure 39 Mixed ASIC/FPGA design 

8. NEW TOOLS 
The most significant area for the future, I believe, lies in the creation of 

new development tools for FPGAs. As programmable devices become larger, 
more complex, and include one or more processors, there is a huge need for 
tools to take advantage of these features and optimize the designs.  

Hardware designers can use hardware description languages (HDLs) like 
Verilog to design their chips at a very high level. They then run their synthesis 
and layout tools that optimize the design.  

As FPGAs come to incorporate processors, the development tools need 
to take software into account and need to optimize at a higher level of 
abstraction. Hardware/software codesign tools will be a necessity.  

Ultimately, there will have to be a melding of hardware and software 
expertise in an FPGA designer. System level issues must be understood and 
addressed, though perhaps not the particulars of FPGA routing resources or 
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operating system task switching. Intelligent tools will be needed to synthesize 
and optimize software just as it is now used to synthesize and optimize 
hardware. These intelligent tools will work with libraries of pre-tested 
hardware objects and software functions, leaving “low-level” C and Verilog 
design necessary only for unique, specialized sections of hardware or software. 

Software developers and their tools will be affected by this integration 
too. To take full advantage of the hardware components in the programmable 
arrays around them, compilers and RTOSes will need to make such integration 
more seamless. If dynamic reconfigurability ever becomes commonplace, a 
future RTOS may even get into the business of scheduling, placement, and 
routing of hardware objects—perhaps treating them as distinct tasks with 
communication mechanisms not unlike software tasks. 

Essentially, platform FPGAs with embedded processors will take market 
share away from ASICs, will become the dominant platform for embedded 
system design, and will finally allow the fulfillment of the promise of and force 
further development of hardware/software codesign tools. 

9. CONCLUSION 
This paper has presented an overview of CPLD and FPGA technologies, 

and given guidelines for developing a chip based on my experience designing 
for a large number of companies and a large number of applications. If all of 
these guidelines are followed, the chances of creating a working chip in a short 
time at minimum expense are excellent. 
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