

Introduction to CPLD and FPGA Design

ESC-306, ESC-326

Bob Zeidman
President

Zeidman Consulting

Bob@ZeidmanConsulting.com
www. ZeidmanConsulting.com

 Introduction to CPLD and FPGA Design

 1

1. INTRODUCTION
Complex Programmable Logic Devices (CPLDs) and Field Programmable

Gate Arrays (FPGAs) are becoming a critical part of every system design. Many
vendors offer many different architectures and processes. Which one is right
for your design? How do you design one of these so that it works correctly and
functions as you expect in your entire system? These are the questions that this
paper sets out to answer.

The first sections of this paper deals with the internal architecture and
characteristics of these devices. Simple programmable logic devices are
described in an overview, leading up to a detailed description of the Complex
Programmable Logic Device and the Field Programmable Gate Array. The
various architectures of these devices are examined in detail along with their
tradeoffs, which allow you to decide which particular device is right for your
design.

The next sections of this paper discuss in detail, the design, simulation,
and testing issues that arise when designing a CPLD or FPGA. The final sections
of this paper examine new architectures of programmable devices and the
software needed to support them.

Understanding these issues will allow you to design a chip that functions
correctly in your system and will be reliable throughout the lifetime of your
product.

2. THE MASKED GATE ARRAY ASIC
An Application Specific Integrated Circuit, or ASIC, is a chip that can be

designed by an engineer with no particular knowledge of semiconductor physics
or semiconductor processes. The ASIC vendor has created a library of cells and
functions that the designer can use without needing to know precisely how
these functions are implemented in silicon. The ASIC vendor also typically
supports software tools that automate such processes as synthesis and circuit
layout. The ASIC vendor may even supply application engineers to assist the
ASIC design engineer with the task. The vendor then lays out the chip, creates
the masks, and manufactures the ASICs.

The gate array is an ASIC with a particular architecture that consists of
rows and columns of regular transistor structures. Each basic cell, or gate,
consists of the same small number of transistors that are not connected. In
fact, none of the transistors on the gate array are initially connected at all.
The reason for this is that the connection is determined completely by the
design that you implement. Once you have your design, the layout software
figures out which transistors to connect. First, your low level functions are
connected together. For example, six transistors could be connected to create

 Introduction to CPLD and FPGA Design

 2

a D flip-flop. These six transistors would be located physically very close to
each other. After your low level functions have been routed, these would in
turn be connected together. The software would continue this process until
the entire design is complete. This row and column structure is illustrated in
Figure 1.

The ASIC vendor manufactures many unrouted die which contain the
arrays of gates and which it can use for any gate array customer. An integrated
circuit consists of many layers of materials including semiconductor material
(e.g., silicon), insulators (e.g., oxides), and conductors (e.g., metal). An
unrouted die is processed with all of the layers except for the final metal
layers that connect the gates together. Once your design is complete, the
vendor simply needs to add the last metal layers to the die to create your chip,
using photomasks for each metal layer. For this reason, it is sometimes
referred to as a Masked Gate Array to differentiate it from a Field
Programmable Gate Array.

Figure 1 Masked Gate Array Architecture

3. THE EVOLUTION OF PROGRAMMABLE DEVICES
Programmable devices have gone through a long evolution to reach the

complexity that they have today. The following sections give an approximately
chronological discussion of these devices from least complex to most complex.

3.1 Programmable Read Only Memories (PROMs)
Programmable Read Only Memories, or PROMs, are simply memories that

can be inexpensively programmed by the user to contain a specific pattern.
This pattern can be used to represent a microprocessor program, a simple
algorithm, or a state machine. Some PROMs can be programmed once only.
Other PROMs, such as EPROMs or EEPROMs can be erased and programmed
multiple times.

PROMs are excellent for implementing any kind of combinatorial logic
with a limited number of inputs and outputs. For sequential logic, external

 Introduction to CPLD and FPGA Design

 3

clocked devices such as flip-flops or microprocessors must be added. Also,
PROMs tend to be extremely slow, so they are not useful for applications where
speed is an issue.

3.2 Programmable Logic Arrays (PLAs)
Programmable Logic Arrays (PLAs) were a solution to the speed and

input limitations of PROMs. PLAs consist of a large number of inputs connected
to an AND plane, where different combinations of signals can be logically
ANDed together according to how the part is programmed. The outputs of the
AND plane go into an OR plane, where the terms are ORed together in different
combinations and finally outputs are produced. At the inputs and outputs there
are typically inverters so that logical NOTs can be obtained. These devices can
implement a large number of combinatorial functions, though not all possible
combinations like a PROM can. However, they generally have many more inputs
and are much faster.

AND
plane

OR
plane

Inputs

Outputs

Figure 2 PLA Architecture

3.3 Programmable Array Logic (PALs)
The Programmable Array Logic (PAL) is a variation of the PLA. Like the

PLA, it has a wide, programmable AND plane for ANDing inputs together.
However, the OR plane is fixed, limiting the number of terms that can be ORed
together. Other basic logic devices, such as multiplexers, exclusive ORs, and
latches are added to the inputs and outputs. Most importantly, clocked
elements, typically flip-flops, are included. These devices are now able to
implement a large number of logic functions including clocked sequential logic
need for state machines. This was an important development that allowed
PALs to replace much of the standard logic in many designs. PALs are also
extremely fast.

 Introduction to CPLD and FPGA Design

 4

Figure 3 PAL Architecture

3.4 CPLDs and FPGAs
Ideally, though, the hardware designer wanted something that gave him

or her the flexibility and complexity of an ASIC but with the shorter turn-
around time of a programmable device. The solution came in the form of two
new devices - the Complex Programmable Logic Device (CPLD) and the Field
Programmable Gate Array. As can be seen in Figure 4, CPLDs and FPGAs bridge
the gap between PALs and Gate Arrays. CPLDs are as fast as PALs but more
complex. FPGAs approach the complexity of Gate Arrays but are still
programmable.

Figure 4 Comparison of CPLDs and FPGAs

3.5 Complex Programmable Logic Devices (CPLDs)

 Introduction to CPLD and FPGA Design

 5

Complex Programmable Logic Devices (CPLDs) are exactly what they
claim to be. Essentially they are designed to appear just like a large number of
PALs in a single chip, connected to each other through a crosspoint switch
They use the same development tools and programmers, and are based on the
same technologies, but they can handle much more complex logic and more of
it.

3.5.1 CPLD Architectures
The diagram in Figure 5 shows the internal architecture of a typical

CPLD. While each manufacturer has a different variation, in general they are
all similar in that they consist of function blocks, input/output block, and an
interconnect matrix. The devices are programmed using programmable
elements that, depending on the technology of the manufacturer, can be
EPROM cells, EEPROM cells, or Flash EPROM cells.

Figure 5 CPLD Architecture

3.5.1.1 Function Blocks
A typical function block is shown in Figure 6. The AND plane still exists

as shown by the crossing wires. The AND plane can accept inputs from the I/O
blocks, other function blocks, or feedback from the same function block. The
terms and then ORed together using a fixed number of OR gates, and terms are
selected via a large multiplexer. The outputs of the mux can then be sent
straight out of the block, or through a clocked flip-flop. This particular block
includes additional logic such as a selectable exclusive OR and a master reset
signal, in addition to being able to program the polarity at different stages.

 Introduction to CPLD and FPGA Design

 6

Usually, the function blocks are designed to be similar to existing PAL
architectures, such as the 22V10, so that the designer can use familiar tools or
even older designs without changing them.

Figure 6 CPLD Function Block

3.5.1.2 I/O Blocks
Figure 7 shows a typical I/O block of a CPLD. The I/O block is used to

drive signals to the pins of the CPLD device at the appropriate voltage levels
with the appropriate current. Usually, a flip-flop is included, as shown in the
figure. This is done on outputs so that clocked signals can be output directly to
the pins without encountering significant delay. It is done for inputs so that
there is not much delay on a signal before reaching a flip-flop, which would
increase the device hold time requirement. Also, some small amount of logic is
included in the I/O block simply to add some more resources to the device.

 Introduction to CPLD and FPGA Design

 7

Figure 7 CPLD Input/Output Block

3.5.1.3 Interconnect
The CPLD interconnect is a very large programmable switch matrix that

allows signals from all parts of the device go to all other parts of the device.
While no switch can connect all internal function blocks to all other function
blocks, there is enough flexibility to allow many combinations of connections.

3.5.1.4 Programmable Elements
Different manufacturers use different technologies to implement the

programmable elements of a CPLD. The common technologies are Electrically
Programmable Read Only Memory (EPROM), Electrically Erasable PROM
(EEPROM) and Flash EPROM. These technologies are similar to, or next
generation versions of, the technologies that were used for the simplest
programmable devices, PROMs.

3.5.2 CPLD Architecture Issues
When considering a CPLD for use in a design, the following issues should

be taken into account:
1. The programming technology

• EPROM, EEPROM, or Flash EPROM? This will determine the
equipment needed to program the devices and whether they
came be programmed only once or many times.

2. The function block capability
• How many function blocks are there in the device?
• How many product and sum terms can be used?
• What are the minimum and maximum delays through the logic?
• What additional logic resources are there such as XNORs,

ALUs, etc.?
• What kinds of register controls are available (e.g., clock

enable, reset, preset, polarity control)? How many are local
inputs to the function block and how many are global, chip-
wide inputs?

• What kind of clock drivers are in the device and what is the
worst-case skew of the clock signal on the chip. This will help
determine the maximum frequency at which the device can
run.

3. The I/O capability
• How many I/O are independent, used for any function, and

how many are dedicated for clock input, master reset, etc.?
• What is the output drive capability in terms of voltage levels

 Introduction to CPLD and FPGA Design

 8

and current?
• What kind of logic is included in an I/O block that can be used

to increase the functionality of the design?

3.5.3 Example CPLD Families
Some CPLD families from different vendors are listed below:

• Altera MAX 7000 and MAX 9000 families
• Atmel ATF and ATV families
• Lattice ispLSI family
• Lattice (Vantis) MACH family
• Xilinx XC9500 family

3.6 Field Programmable Gate Arrays (FPGAs)
Field Programmable Gate Arrays are called this because rather than

having a structure similar to a PAL or other programmable device, they are
structured very much like a gate array ASIC. This makes FPGAs very nice for
use in prototyping ASICs, or in places where and ASIC will eventually be used.
For example, an FPGA maybe used in a design that needs to get to market
quickly regardless of cost. Later an ASIC can be used in place of the FPGA when
the production volume increases, in order to reduce cost.

3.6.1 FPGA Architectures

 Introduction to CPLD and FPGA Design

 9

Figure 8 FPGA Architecture

Each FPGA vendor has its own FPGA architecture, but in general terms
they are all a variation of that shown in Figure 8. The architecture consists of
configurable logic blocks, configurable I/O blocks, and programmable
interconnect. Also, there will be clock circuitry for driving the clock signals to
each logic block, and additional logic resources such as ALUs, memory, and
decoders may be available. The two basic types of programmable elements for
an FPGA are Static RAM and anti-fuses.

3.6.1.1 Configurable Logic Blocks
Configurable Logic Blocks contain the logic for the FPGA. In a large-grain

architecture, these CLBs will contain enough logic to create a small state
machine. In a fine-grain architecture, more like a true gate array ASIC, the CLB
will contain only very basic logic. The diagram in Figure 9 would be considered
a large grain block. It contains RAM for creating arbitrary combinatorial logic
functions, also known as lookup tables (LUTs). It also contains flip-flops for
clocked storage elements, and multiplexers in order to route the logic within
the block and to and from external resources. The muxes also allow polarity
selection and reset and clear input selection.

 Introduction to CPLD and FPGA Design

 10

Figure 9 FPGA Configurable Logic Block

3.6.1.2 Configurable I/O Blocks
A Configurable I/O Block, shown in Figure 10, is used to bring signals

onto the chip and send them back off again. It consists of an input buffer and
an output buffer with three state and open collector output controls. Typically
there are pull up resistors on the outputs and sometimes pull down resistors.
The polarity of the output can usually be programmed for active high or active
low output and often the slew rate of the output can be programmed for fast
or slow rise and fall times. In addition, there is often a flip-flop on outputs so
that clocked signals can be output directly to the pins without encountering
significant delay. It is done for inputs so that there is not much delay on a
signal before reaching a flip-flop, which would increase the device hold time
requirement.

 Introduction to CPLD and FPGA Design

 11

Figure 10 FPGA Configurable I/O Block

3.6.1.3 Programmable Interconnect
The interconnect of an FPGA is very different than that of a CPLD, but is

rather similar to that of a gate array ASIC. In Figure 11, a hierarchy of
interconnect resources can be seen. There are long lines that can be used to
connect critical CLBs that are physically far from each other on the chip
without inducing much delay. They can also be used as buses within the chip.
There are also short lines that are used to connect individual CLBs that are
located physically close to each other. There are often one or several switch
matrices, like that in a CPLD, to connect these long and short lines together in
specific ways. Programmable switches inside the chip allow the connection of
CLBs to interconnect lines and interconnect lines to each other and to the
switch matrix. Three-state buffers are used to connect many CLBs to a long
line, creating a bus. Special long lines, called global clock lines, are specially
designed for low impedance and thus fast propagation times. These are
connected to the clock buffers and to each clocked element in each CLB. This
is how the clocks are distributed throughout the FPGA.

 Introduction to CPLD and FPGA Design

 12

Figure 11 FPGA Programmable Interconnect

3.6.1.4 Clock Circuitry
Special I/O blocks with special high drive clock buffers, known as clock

drivers, are distributed around the chip. These buffers connect to clock input
pads and drive the clock signals onto the global clock lines described above.
These clock lines are designed for low skew times and fast propagation times.
As we will discuss later, synchronous design is a must with FPGAs, since
absolute skew and delay cannot be guaranteed. Only when using clock signals
from clock buffers can the relative delays and skew times be guaranteed.

3.6.2 Small vs. Large Granularity
Small grain FPGAs resemble ASIC gate arrays in that the CLBs contain

only small, very basic elements such as NAND gates, NOR gates, etc. The
philosophy is that small elements can be connected to make larger functions
without wasting too much logic. In a large-grain FPGA, where the CLB can
contain two or more flip-flops, a design that does not need many flip-flops will
leave many of them unused. Unfortunately, small grain architectures require
much more routing resources, which take up space and insert a large amount
of delay which can more than compensate for the better utilization.

Small Granularity Large Granularity
better utilization fewer levels of logic
direct conversion to ASIC less interconnect delay

 Introduction to CPLD and FPGA Design

 13

Table 1 Small vs. Large Grain FPGAs

A comparison of advantages of each type of architecture is shown in
Table 1 above. The choice of which architecture to use is dependent on your
specific application.

3.6.3 SRAM vs. Anti-fuse Programming
There are two competing methods of programming FPGAs. The first,

SRAM programming, involves small Static RAM bits for each programming
element. Writing the bit with a zero turns off a switch, while writing with a
one turns on a switch. The other method involves anti-fuses, which consist of
microscopic structures that, unlike a regular fuse, normally make no
connection. A certain amount of current during programming of the device
causes the two sides of the anti-fuse to connect.

The advantages of SRAM based FPGAs is that they use a standard
fabrication process that chip fabrication plants are familiar with and are
always optimizing for better performance. Since the SRAMs are
reprogrammable, the FPGAs can be reprogrammed any number of times, even
while they are in the system, just like writing to a normal SRAM. SRAM based
devices can easily use the internal SRAMs as small memories in the design. The
disadvantages are that they are volatile, which means a power glitch could
potentially change it. Also, SRAM-based devices have large routing delays.

The advantages of Anti-fuse based FPGAs are that they are non-volatile
and the delays due to routing are very small, so they tend to be faster.
Antifuse based FPGAs tend to require lower power and they are better for
keeping your design information out of the hands of competitors because they
do not require an external device to program them upon power-up as SRAM
based devices do. The disadvantages are that they require a complex
fabrication process, they require an external programmer to program them,
and once they are programmed, they cannot be changed.

3.6.4 Example FPGA Families
Examples of SRAM based FPGA families include the following:

• Altera FLEX family
• Atmel AT6000 and AT40K families
• Lucent Technologies ORCA family
• Xilinx XC4000 and Virtex families

Examples of Anti-fuse based FPGA families include the following:
• Actel SX and MX families
• Quicklogic pASIC family

3.7 Choosing Between CPLDs and FPGAs

 Introduction to CPLD and FPGA Design

 14

Choosing between a CPLD and an FPGA will depend on the
characteristics and requirements of your project. A summary of the
characteristics of each is show in Figure 12 below.

 CPLD FPGA
Architecture PAL-like Gate Array-like
Density Low to medium

12 22V10s or more
Medium to high

up to 1 million gates
Speed Fast, predictable Application dependent
Interconnect Crossbar Routing
Power Consumption High Medium

Figure 12 CPLDs vs. FPGAs

4. DESIGN ISSUES
In the next sections of this paper, we will discuss those areas that are

unique to FPGA design or that are particularly critical to these devices.

4.1 Top-Down Design
Top-down design is the design method whereby high level functions are

defined first, and the lower level implementation details are filled in later. A
schematic can be viewed as a hierarchical tree as shown in Figure 13. The top
level block represents the entire chip. Each lower level block represents major
functions of the chip. Intermediate level blocks may contain smaller
functionality blocks combined with gate-level logic. The bottom level contains
only gates and macrofunctions, which are vendor-supplied high-level functions.
Fortunately, schematic capture software and hardware description languages
used for chip design easily allow use of the top-down design methodology.

 Introduction to CPLD and FPGA Design

 15

Figure 13 Top-Down Design

Top-down design is the preferred methodology for chip design for
several reasons. First, chips often incorporate a large number of gates and a
very high level of functionality. This methodology simplifies the design task
and allows more than one engineer, when necessary, to design the chip.
Second, it allows flexibility in the design. Sections can be removed and
replaced with higher-performance or optimized designs without affecting other
sections of the chip.

Also important is the fact that simulation is much simplified using this
design methodology. Simulation is an extremely important consideration in
chip design since a chip cannot be blue-wired after production. For this
reason, simulation must be done extensively before the chip is sent for
fabrication. A top-down design approach allows each module to be simulated
independently from the rest of the design. This is important for complex
designs where an entire design can take weeks to simulate and days to debug.
Simulation is discussed in more detail later in this paper.

4.2 Keep the Architecture in Mind
Look at the particular architecture to determine which logic devices fit

best into it. The vendor may be able to offer advice about this. Many synthesis
packages can target their results to a specific FPGA or CPLD family from a
specific vendor, taking advantage of the architecture to provide you with
faster, more optimal designs.

4.3 Synchronous Design
One of the most important concepts in chip design, and one of the

hardest to enforce on novice chip designers, is that of synchronous design.
Once a chip designer uncovers a problem due to asynchronous design and
attempts to fix it, he or she usually becomes an evangelical convert to
synchronous design. This is because asynchronous design problems are due to
marginal timing problems that may appear intermittently, or may appear only
when the vendor changes its semiconductor process. Asynchronous designs that
work for years in one process may suddenly fail when the chip is manufactured
using a newer process.

Synchronous design simply means that all data is passed through
combinatorial logic and flip-flops that are synchronized to a single clock. Delay
is always controlled by flip-flops, not combinatorial logic. No signal that is
generated by combinatorial logic can be fed back to the same group of
combinatorial logic without first going through a synchronizing flip-flop. Clocks
cannot be gated - in other words, clocks must go directly to the clock inputs of
the flip-flops without going through any combinatorial logic.

 Introduction to CPLD and FPGA Design

 16

The following sections cover common asynchronous design problems and
how to fix them using synchronous logic.

4.3.1 Race conditions
Figure 14 shows an asynchronous race condition where a clock signal is

used to reset a flip-flop. When SIG2 is low, the flip-flop is reset to a low state.
On the rising edge of SIG2, the designer wants the output to change to the high
state of SIG1. Unfortunately, since we don’t know the exact internal timing of
the flip-flop or the routing delay of the signal to the clock versus the reset
input, we cannot know which signal will arrive first - the clock or the reset.
This is a race condition. If the clock rising edge appears first, the output will
remain low. If the reset signal appears first, the output will go high. A slight
change in temperature, voltage, or process may cause a chip that works
correctly to suddenly work incorrectly. A more reliable synchronous solution is
shown in Figure 15. Here a faster clock is used, and the flip-flop is reset on the
rising edge of the clock. This circuit performs the same function, but as long as
SIG1 and SIG2 are produced synchronously - they change only after the rising
edge of CLK - there is no race condition.

D

CLK

Q

CLR

SIG1

SIG2

OUT

SIG1

SIG2

OUT
Figure 14 Asynchronous: Race Condition

 Introduction to CPLD and FPGA Design

 17

D

CLK

QSIG2
SIG2d

SIG1

SIG2

OUT

CLK

D

CLK

Q

CLK

OUT

CLKSIG2d
SIG1

OUT

Figure 15 Synchronous: No Race Condition

4.3.2 Delay dependent logic
Figure 16 shows logic used to create a pulse. The pulse width depends

very explicitly on the delay of the individual logic gates. If the process should
change, making the delay shorter, the pulse width will shorten also, to the
point where the logic that it feeds may not recognize it at all. A synchronous
pulse generator is shown in Figure 17. This pulse depends only on the clock
period. Changes to the process will not cause any significant change in the
pulse width.

A

Z
A3

pulse
width

A

A3

Z

A2A1

Figure 16 Asynchronous: Delay Dependent Logic

 Introduction to CPLD and FPGA Design

 18

D

CLK

Q
A’

D

CLK

Q
CLK

Z

CLK

CLK

A

Z

A

Figure 17 Synchronous: Delay Independent Logic

4.3.3 Hold time violations
Figure 18 shows an asynchronous circuit with a hold time violation. Hold

time violations occur when data changes around the same time as the clock
edge. It is uncertain which value will be registered by the clock. The circuit in
Figure 19 fixes this problem by putting both flip-flops on the same clock and
using a flip-flop with an enable input. A pulse generator creates a pulse that
enables the flip-flop.

D

CLK

Q
D1

D

CLK

Q

CLK

D2

D3

D4

CLK

D1

D2

D3

D4

Hold time violation
Figure 18 Asynchronous: Hold Time Violation

 Introduction to CPLD and FPGA Design

 19

 D2

D1

CLK

CLK

D1

D2

D3

D3p

D4

CLK

D Q

CLK

D Q

CLK

D Q

EN

CLK CLK

D4
D3 D3pD3d

D3d

pulse generator

Figure 19 Synchronous: No Hold Time Violation

4.3.4 Glitches
A glitch can occur due to small delays in a circuit such as that shown in

Figure 20. An inverting multiplexer contains a glitch when switching between
two signals, both of which are high. Yet due to the delay in the inverter, the
output goes high for a very short time. Synchronizing this output by sending it
through a flip-flop as shown in Figure 21, ensures that this glitch will not
appear on the output and will not affect logic further downstream.

D0

D1

SEL SEL

D0

SEL

D1

SEL

Z

Z
glitch

Figure 20 Asynchronous: Glitch

 Introduction to CPLD and FPGA Design

 20

D0

D1

SEL SEL

D0

SEL

D1

SEL

Zp

D

CLK

Q
Z

CLK

Z

Zp

CLK

Figure 21 Synchronous: No Glitch

4.3.5 Bad clocking
Figure 22 shows an example of asynchronous clocking. This kind of

clocking will produce problems of the type discussed previously. The correct
way to enable and disable outputs is not by putting logic on the clock input,
but by putting logic on the data input as shown in Figure 23.

CLK

D

CLK

Q
OUTDATA

GATE

Figure 22 Asynchronous: Bad Clocking

CLK

D

CLK

Q
OUT

DATA

GATE

I0

I1

Figure 23 Synchronous: Good Clocking

4.3.6 Metastability

 Introduction to CPLD and FPGA Design

 21

D

CLK

QASYNC_IN
OUT1

ASYNC_IN

IN

A

CLK

D

CLK

Q
CLK

OUT2

CLKCLK

A

B

D

CLK

Q

1

1

B

OUT1

OUT2

OUT1 and OUT2 are different

IN

Figure 24 Metastability - The Problem

One of the great buzzwords, and often-misunderstood concepts, of
synchronous design is metastability. Metastability refers to a condition that
arises when an asynchronous signal is clocked into a synchronous flip-flop.
While chip designers would prefer a completely synchronous world, the
unfortunate fact is that signals coming into a chip will depend on a user
pushing a button or an interrupt from a processor, or will be generated by a
clock that is different from the one used by the chip. In these cases, the
asynchronous signal must be synchronized to the chip clock so that it can be
used by the internal circuitry. The designer must be careful how to do this in
order to avoid metastability problems as shown in Figure 24. If the ASYNC_IN
signal goes high around the same time as the clock, we have an unavoidable
race condition. The output of the flip-flop can actually go to an undefined
voltage level that is somewhere between a logic 0 and logic 1. This is because
an internal transistor did not have enough time to fully charge to the correct
level. This metalevel may remain until the transistor voltage leaks off or
“decays”, or until the next clock cycle. During the clock cycle, the gates that
are connected to the output of the flip-flop may interpret this level
differently. In the figure, the upper gate sees the level as a logic 1 whereas the
lower gate sees it as a logic 0. In normal operation, OUT1 and OUT2 should
always be the same value. In this case, they are not and this could send the

 Introduction to CPLD and FPGA Design

 22

logic into an unexpected state from which it may never return. This
metastability can permanently lock up your chip.

D

CLK

Q
OUT1

ASYNC_IN

SYNC_IN

A

CLK

D

CLK

Q
CLK

OUT2

CLKCLK

A

B

D

CLK

Q

1

1

B

OUT1

OUT2

ASYNC_IN

CLK
D

CLK

Q
SYNC_IN IN

IN

synchronizer

Figure 25 Metastability - The "Solution"

The “solution” to this metastability problem is shown in Figure 25. By
placing a synchronizer flip-flop in front of the logic, the synchronized input will
be sampled by only one device, the second flip-flop, and be interpreted only as
a logic 0 or 1. The upper and lower gates will both sample the same logic level,
and the metastability problem is avoided. Or is it? The word solution is in
quotation marks for a very good reason. There is a very small but non-zero
probability that the output of the synchronizer flip-flop will not decay to a
valid logic level within one clock period. In this case, the next flip-flop will
sample an indeterminate value, and there is again a possibility that the output
of that flip-flop will be indeterminate. At higher frequencies, this possibility is
greater. Unfortunately, there is no certain solution to this problem. Some
vendors provide special synchronizer flip-flops whose output transistors decay
very quickly. Also, inserting more synchronizer flip-flops reduces the
probability of metastability but it will never reduce it to zero. The correct
action involves discussing metastability problems with the vendor, and
including enough synchronizing flip-flops to reduce the probability so that it is
unlikely to occur within the lifetime of the product.

Notice that each synchronizer flip-flop may delay the logic level change

 Introduction to CPLD and FPGA Design

 23

on the input by one clock cycle before it is recognized by the internal circuitry
of the chip. Given that the external signal is asynchronous, by definition this is
not a problem since the exact time that it is asserted will not be deterministic.
If this delay is a problem, then most likely the entire system will need to be
synchronized to a single clock.

4.3.7 Allowable uses of asynchronous logic
Now that I’ve gone through a long argument against asynchronous

design, I will tell you the few exceptions that I have found to this rule. These
exceptions, however, must be designed with extreme caution and only as a last
resort when a synchronous solution cannot be found.

4.3.7.1 Asynchronous reset
There are times when an asynchronous reset is acceptable, or even

preferred. If the vendor’s library includes asynchronously reset-able flip-flops,
the reset input can be tied to a master reset in order to reduce the routing
congestion and to reduce the logic required for a synchronous reset. FPGAs and
CPLDs will typically have master reset signals built into the architecture. Using
these signals to reset state machines frees up interconnect for other uses.

Asynchronous reset should be used only for resetting the entire chip and
should not occur during normal functioning of the chip. After reset, you must
ensure that the chip is in a stable state such that no flip-flops will change until
an input changes. You must also ensure that the inputs to the chip are stable
and will not change for at least one clock cycle after the reset is removed.

4.3.7.2 Asynchronous latches on inputs
Some buses, such as the VME bus, are designed to be asynchronous. In

order to interface with these buses, it is necessary to use asynchronous latches
to capture addresses or data. Once the data is captured, it must be
synchronized to the internal clock. However, it is usually much more efficient
to use asynchronous latches to capture the data initially. Unless your chip uses
a clock that has a frequency much higher than that of the bus, attempting to
synchronously latch these signals will cause a large amount of overhead and
may actually produce timing problems rather than reduce them.

4.4 Floating Nodes
Floating nodes, or internal nodes of a circuit which are not continually

driven, should be avoided. An example of a potential floating node is shown in
Figure 26. If signals SEL_A and SEL_B are both not asserted, signal OUT will
float to an unknown level. Downstream logic may interpret OUT as a logic 1, a
logic 0, or it may produce a metastable state. In addition, any CMOS circuitry

 Introduction to CPLD and FPGA Design

 24

that has OUT as an input will use up power since CMOS uses power when the
input is in the threshold region.

Figure 26 Floating Nodes - The Problem

Two solutions to the floating node problem are shown in Figure 27. At
the top, signal OUT is pulled up using an internal pull-up resistor. This ensures
that when both select signals are not asserted, OUT will be pulled to a good
logic level. The other solution, shown at the bottom of the figure, is to make
sure that something is driving the output at all times. A third select is
generated which drives the output to a good level when neither of the select
signals is asserted.

Figure 27 Floating Nodes - Solutions

4.5 Bus Contention
Bus contention occurs when two outputs drive the same signal at the

same time as shown in Figure 28. For obvious reasons, this is bad and reduces
the reliability of the chip. If bus contention occurs even for short times during
a clock cycle, after many clock cycles the possibility of damage to one of the
drivers increases. The solution is to ensure that both drivers cannot be

 Introduction to CPLD and FPGA Design

 25

asserted simultaneously. This can be accomplished by inserting additional logic
as shown in Figure 29. The ideal solution is to avoid tri-state drivers
altogether, and use muxes whenever possible.

Figure 28 Bus Contention - The Problem

Figure 29 Bus Contention - The Solution

4.6 One-Hot State Encoding
For large grain FPGAs, which are the majority of architectures available,

the normal method of designing state machines is not optimal. This is because
the each CLB in an FPGA has one or more flip-flops, making for an abundance
of flip-flops. For large combinatorial logic terms, however, many CLBs are
often involved which means connecting these CLBs through slow interconnect.
A typical state machine design, like the one shown in Figure 30, uses few flip-
flops and much combinatorial logic. This is good for ASICs, bad for FPGAs.

 Introduction to CPLD and FPGA Design

 26

Figure 30 State Machine: Usual Method

The better method of designing state machines for FPGAs is known as
one-hot encoding, seen in Figure 31. Using this method, each state is
represented by a single flip-flop, rather than encoded from several flip-flop
outputs. This greatly reduces the combinatorial logic, since only one bit needs
to be checked to see if the state machine is in a particular state. It is
important to note that each state bit flip-flop needs to be reset when
initialized, except for the IDLE state flip-flop that needs to be set so that the
state machine begins in the IDLE state.

Figure 31 State Machine: One-Hot Encoding

 Introduction to CPLD and FPGA Design

 27

5. DESIGN FOR TEST (DFT)
“Design for test” is a concept that means your chip is designed in such a

way that testing it is easy. Test logic plays two roles. First, it helps debug a
chip that has design flaws. Second, it can catch manufacturing problems. Both
are particularly important for ASIC design because of the black box nature of
ASICs where internal nodes are simply not accessible to you when there is a
problem. These techniques are also applicable to CPLDs and FPGAs, many of
which already have built-in test features. The following DFT techniques allow
for better testing of a chip. While not all of these techniques need to be
included in your design, those that are needed should be included at design
time. DFT techniques should be taken into account during the design process
rather than afterwards. Otherwise, circuits can be designed that are later
found to be difficult, if not impossible, to test.

One important consideration that can be overlooked is that test logic is
intended to increase the testability and reliability of your chip. If test logic
becomes too large, it can actually decrease reliability because the test logic
can itself have problems that cause the chip to malfunction. A rule of thumb is
that test circuitry should not make up more than 10% of the logic of the entire
chip. Similarly, if you spend more than 10% of your time designing and
simulating your test logic independently of the functionality of the chip, then
you have more test circuitry than you need.

5.1 Testing Redundant Logic
The top of Figure 32 shows a circuit that has duplicated logic in order to

increase the reliability of the design. However, since the circuit is not
testable, the effect is not as useful as it could be. The circuit on the bottom
shows how test lines can be added to allow the entire circuit to be tested.

Figure 32 Testing Redundant Logic

5.2 Initializing State Machines

 Introduction to CPLD and FPGA Design

 28

It is important that all state machines, and in fact all registers in your
design be able to be initialized. This ensures that if a problem arises, the chip
can be put into a known state from which to begin debugging. Also, for
simulation purposes, simulation software needs to start out from a known state
before useful results can be obtained.

5.3 Observable Nodes
As many nodes as possible in your chip design should be observable. In

other words, it should be possible to determine the values of these nodes using
the I/O pins of the chip. On the left side of Figure 33, an unobservable state
machine is shown. On the right side, the state machine has been made
observable by taking each state machine through a mux to an external pin.
Test signals can be used to select which output is being observed. If no pins are
available, the state bits can be muxed onto an existing pin that, during testing,
is used to observe the state machine. This allows for much easier debugging of
internal state machines.

Figure 33 Observable Nodes

5.4 Scan Techniques
Scan techniques, shown in Figure 34, allow the nodes of the chip to be

scanned out so that they can be observed externally. There are two main scan
techniques - full scan and boundary scan. Full scan is extremely flexible,
especially since it can also allow values to be scanned into the chip so that you
can start it from a known state. This is particularly useful if a problem occurs
only after the chip has been operating for a long time. A state can be quickly
scanned into the chip that corresponds to the state that would normally be
reached after a long time in operation. The drawback of scan techniques is
that they require a lot of software development to support. Also, if states are
scanned into the chip, you must be careful not to scan in illegal states. It is

 Introduction to CPLD and FPGA Design

 29

possible to turn on multiple drivers to a single net internally which would
normally not happen, but which would burn out the chip. Similarly, outputs
must be disabled while the chip is being scanned since dangerous combinations
of outputs may be asserted that can harm your system. There are other
considerations, also, such as what to do with the clock and what to do with the
rest of the system while the chip is being scanned.

Figure 34 Scan Methodology

Boundary scan is somewhat easier to implement and does not add as
much logic to the entire chip design. Boundary scan only scans nodes around
the boundary of the chip, but not internal nodes. In this way, internal
contention problems are avoided, although contention problems with the rest
of the system still need to be considered. Boundary scan is also useful for
testing the rest of your system, since the outputs can be toggled and the effect
on the rest of the system observed.

5.5 Built-In Self Test

Figure 35 Built-In Self Test

Another method of testing your chip is to put all of the test circuitry on

 Introduction to CPLD and FPGA Design

 30

the chip in such a way that the chip tests itself. This is called built-in self test
or BIST. In this case, some circuitry inside the chip can be activated by
asserting a special input or combination of inputs. This circuitry then runs a
series of test on the chip. If the result of the tests does not match the
expected result, the chip signals that there is a problem. The details of what
type of tests to run and how to signal a good or bad chip is left up to the
designer.

5.6 Signature Analysis
Signature analysis involves putting a pseudo-random sequence of ones

and zeroes into the chip and noting the ones and zeroes that come out. This
output sequence is referred to as the chip’s signature. This type of testing can
be accomplished with the chip in a normal mode of operation, but is usually
performed in scan mode as described above. By repeating the same pseudo-
random series of bits, the resulting signature should be the same for each chip.
Any chip that produces an incorrect signature is a bad chip. This type of testing
is probabilistic and assumes that a pseudo-random sequence of events has a
good chance of catching errors, which may not be true. However, it requires
very little hardware to implement and can be used as a simple form of BIST.

6. SIMULATION ISSUES
Perhaps the most important phase of chip design, and the most often

overlooked phase, is that of simulation. Simulation can save many frustrating
hours debugging a chip in your system. Doing a good job at simulation uncovers
errors before they are set in silicon, and can help determine that your chip will
function correctly in your system.

There are two main aspects of your design for which simulation is used
to determine correctness - functionality and timing. Functionality refers to
how the chip functions as a whole, and how it functions in your system. A chip
that is designed to function as an Ethernet controller may function correctly on
its own. In a system that requires an ATM controller, for example, it will not
work at all. It is important to look not only at the functionality of the chip as
an independent design, but also to test its functionality within the system in
which it will be incorporated.

The second aspect of your design which simulation examines is timing.
Will your chip meet all of its timing requirements under all possible conditions?
Are there any race conditions? Are the setup and hold time requirements met
for each flip-flop? Do the I/O signals of the chip meet the timing requirements
of the system? The following sections discuss ways of using timing to determine
both correct functionality and correct timing.

 Introduction to CPLD and FPGA Design

 31

6.1.1 Functional Simulation
Functional simulation involves simulating the functionality of a device

without taking the timing of the device into account. This type of simulation is
important initially in order to get as many bugs out of the device as possible
and to determine that the chip will work correctly in your system. During the
first phases of simulation, you shouldn’t be very concerned about timing
because it will change as the design changes. In fact, the final timing will not
be known precisely until the layout is complete. Of course you need to know
initially that, in general, the timing of the chip process can support the speed
and the I/O requirements of your design.

When performing functional simulation, a rough estimate of the amount
of simulation to perform is called toggle coverage, which measures the
percentage of flip-flops in the chip that change state during simulation from 0
to 1 and 1 to 0. Many simulation packages will give you a number for the toggle
coverage, and you should have 100 percent coverage before feeling good about
the amount of simulation. This coverage can still leave many potential faults
uncovered, but it signifies that each state machine has been simulated and no
part of the circuit has gone unexamined.

Toggle coverage is primarily used for schematic based designs, which are
rare these days. The equivalent check for designs using HDLs is called code
coverage, which measures the percentage of possible code statement branches
that have been executed. In other words, an assignment statement is
completely covered if it is executed at all, while a branch statement is
completely covered if all possible branches are taken during the simulation.

6.1.2 Static Timing Analysis
Static timing analysis is a process that looks at a synchronous design and

determines the highest operating frequency of the design that does not violate
any setup and hold times. You can also use the static timing analysis software
to specify a specific frequency, and the tool will list all paths that violate the
timing requirements. These paths can then be adjusted to meet your
requirements. Any asynchronous parts of your design (they should be few, if
any) must be examined by hand.

Static timing analysis, or some sort of timing analysis must be performed
immediately before layout of your chip. At this point, the timing numbers will
be estimates that take expected trace lengths into account. After layout,
timing analysis must be performed again to determine that the real chip, with
real trace lengths and delays, still meets you timing requirements.

6.1.3 Timing Simulation
This method of timing analysis is growing less and less popular. It

 Introduction to CPLD and FPGA Design

 32

involves including timing information in a functional simulation so that the real
behavior of the chip is simulated. The advantage of this kind of simulation is
that timing and functional problems can be examined and corrected. Also,
asynchronous designs must use this type of analysis because static timing
analysis only works for synchronous designs. This is another reason for
designing synchronous chips only.

As chips become larger, though, this type of compute-intensive
simulation takes longer and longer to run. Also, simulations can miss particular
transitions that result in worst-case results. This means that certain long delay
paths never get evaluated and a chip with timing problems can pass timing
simulation. If you do need to perform timing simulation, it is important to do
both worst-case simulation and best-case simulation. The term “best-case” can
be misleading. It refers to a chip that, due to voltage, temperature, and
process variations, is operating faster than the typical chip. However, hold
time problems become apparent only during the best-case conditions.

7. EMERGING TECHNOLOGIES

7.1 Cores
By a “core” we are simply referring to the basic function, excluding any

extraneous circuits like I/O buffers that would be found on a processor chip.
There are two types of cores. The soft core, known as an IP core, is a function
that is described by its logic function rather than by any physical
implementation. Cores usually consist of HDL code. Hard cores, on the other
hand, consist of physical implementations of a function. With respect to CPLDs
and FPGAs, these hard cores are known as embedded cores because they are
physically embedded onto the die and surrounded by programmable logic.

Many of the FPGA and CPLD vendors have begun offering cores. As the
density of programmable devices increases, it is enabling what is called a
System on a Programmable Chip (SOPC). In other words, whereas
programmable devices were initially developed to replace glue logic, entire
systems can now be placed on a single programmable device. Systems consist
of all kinds of complicated devices like processors. In order to place these
complex functions within a programmable device, there are three options —
design the function yourself, purchase the HDL code for the function and
incorporate it into your HDL code, or get the vendor to include the function as
a cell in the programmable device. The second option is the IP core while the
third option is the embedded core.

7.1.1 IP Cores
IP cores are often sold by third party vendors that specialize in creating

 Introduction to CPLD and FPGA Design

 33

these functions. Recently, CPLD and FPGA vendors have begun offering their
own soft cores. IP cores reduce the time and manpower requirements for the
FPGA designer. IP cores have already been designed, characterized, and
verified. Also, IP cores can often be modifiable, meaning that you can add or
subtract functionality to suit your needs.

But IP cores may also be expensive. IP cores can be optimized to a
certain degree, but the complete optimization depends on its use in a
particular device and also depends on the logic to which it is connected. Such
IP purchased from a third party may not be optimized for your particular CPLD
or FPGA vendor. You may not be able to meet your speed or power
requirements, especially after you have placed and routed it.

7.1.2 Embedded Cores
The embedded core is in many ways ideal for users, which is one reason

why programmable device vendors are now offering embedded cores in their
devices. The embedded core will be optimized for the vendor’s process to give
you good timing and power consumption numbers. The function will be placed
as a single cell on the silicon die and so the performance of the function will
not depend on the rest of your design since it will not need to be placed and
routed.

Some embedded cores are analog devices that cannot be designed into
an ordinary CPLD or FPGA. By integrating these functions into the device, you
can avoid the difficult process of designing analog devices, and you save the
chips and components that would otherwise be required outside the
programmable device.

Of course there is a drawback to embedded cores. By using an
embedded core in your programmable device, you tie your design into a single
vendor. Unless another vendor offers the same embedded core, which is
unlikely, switching to another vendor will require a large effort and will not be
pleasant.

Another reason for offering embedded cores is a business reason. There
are essentially two major players in the CPLD and FPGA markets — Xilinx and
Altera. The smaller players have tried for years to compete with the result,
generally, that their market share has remained flat or shrunk. In order for the
smaller vendors to differentiate themselves from the big two, they need to
find a niche market that they can dominate. These niche markets support
those designs that need a very specific function. I should say that these niche
markets might turn out to be very big. However, it is a bet-the-house risk,
especially for the smaller companies. If a small company puts a lot of resources
into developing and marketing a programmable device that includes a specific
processor that ends up being designed into every personal computer, then that

 Introduction to CPLD and FPGA Design

 34

vendor can see a significant amount of sales. But if the vendor bets on the
wrong processor, they could lose a huge amount of R&D money and get little
revenue in return. This isn’t as big a risk for the large vendors because they
have more resources, more sales channels, and more cash to quickly change
directions and develop new families of devices.

7.1.3 Processor cores
Processor cores are one of the types of cores commonly available as IP

cores or embedded cores. These processors tend to be those that are designed
for embedded systems since, almost by definition, programmable devices are
embedded systems.

If the processor core is embedded, you will be using a processor that has
been optimized and has predictable timing and power consumption numbers.
For either type of core, tools will be readily available for software
development. Off-the-shelf cross compilers and simulators can be used to
debug code before the design has been completed and the programmable
device is available.

An example of an FPGA with an embedded processor, along with other
embedded cores, is shown in Figure 36.

Figure 36 FPGA with embedded processor core

 Introduction to CPLD and FPGA Design

 35

7.1.4 DSP cores
Digital Signal Processors (DSPs) are another common type of core that is

offered as an IP core or an embedded core. These are essentially specialized
processors that are used for manipulating analog signals. They are commonly
used for filtering and compression of video or audio signals. Many engineers
have argued that as general processors become faster, DSPs will be less useful
because the same functions can be accomplished on the generic processors.
However video and audio digitization, compression, and filtering requirements
have increased in recent years as millions of users connect to the Internet and
regularly upload and download all kinds of information over relatively limited
bandwidth connections. So far, DSP demand for use in networking and graphics
devices has been increasing, not decreasing.

7.1.5 Embedded PHY cores
PHY cores are the analog circuitry that drives networks. Many companies

are now integrating this functionality onto their devices. Because these devices
include specialized analog circuitry, they are available only as embedded
cores.

Figure 37 FPGA with embedded PHY core

In the late nineties, during the heyday of the Internet, networking
companies were springing up all over. In order to save design time, these

 Introduction to CPLD and FPGA Design

 36

companies could use FPGAs with PHY cores built in. Unfortunately, this boom
didn’t last and some networking technologies did not find the mass acceptance
that was predicted. For engineers designing an interface to a specific type of
network, an FPGA with the appropriate PHY core can be a very good resource.
For the programmable device vendor, it can be something of a risk to support a
particular PHY core that may not end up being the standard that they expect
or have the mass-market acceptance that they are counting on.

Figure 37 shows an example of an FPGA with an embedded PHY core
that can be programmed to interface to a variety of different networks.

7.2 Special I/O drivers
Special I/O drivers are now being embedded into programmable devices.

The newer buses inside personal computers need to be driven by special high-
drive, impedance-matched circuits. They need to have inputs with very
specific voltage threshold values. Many vendors now offer programmable
devices with I/O that meet these special requirements. Many times, this is the
only way to design a programmable device that can interface with these
devices.

7.3 New Architectures
New architectures are being developed for CPLDs and FPGAs. There are

still occasional attempts to create a fine grain architecture where the logic
blocks consist of small logic functions. Most of these attempts, I believe, are
doomed to failure because routing is still the main constraint in any FPGA. Fine
grain architectures require more routing than large grain architectures.

One type of architecture that is being developed for FPGAs has a logic
block that it based on a DSP. In Figure 38, we see such a logic block. This type
of FPGA will be better for use in chips that need a significant amount of signal
processing. I have certain doubts about this future path, though. First, the
majority of programmable devices do not perform any DSP, so this architecture
targets a relatively small market. Second, special tools will be needed to
convert digital signaling algorithms for use in such a specialized FPGA. These
tools will need to optimize the algorithm very well so that performance in this
specialized FPGA can actually perform better than a standard DSP, or a generic
processor, running code that has been optimized using tools and compilers that
have been available for years.

 Introduction to CPLD and FPGA Design

 37

Figure 38 DSP core cell in an FPGA

7.4 ASICs with embedded FPGA cells
A relatively new concept that has taken hold in the imaginations of some

established FPGA vendors and some new startup companies is to embed FPGAs
into ASICs. There are two ways of doing this. One way is to create small
programmable cells of logic that can be used in an ASIC. These cells would be
similar to the configurable logic blocks of an FPGA and could be placed, along
with hard logic cells, anywhere on an ASIC. The other way is to embed an FPGA
core into an ASIC and allow logic to be placed around this core.

The technology of providing FPGA cells for ASIC designs is an interesting
one. I don’t have a good feel for the size of this market, though I feel that
there definitely is a market. There are several specific areas where I see
potential.

1. Cost reduction. For engineers who are already designing systems
that include both ASICs and FPGAs, putting FPGA cells inside the ASIC
combines multiple chips into one hybrid chip. This will result in a
significant cost savings by eliminating chips. For engineers who are
considering a design that includes ASIC technology and FPGA
technology, this solution saves PC board space, and the resulting
hybrid chip will generally require fewer external pins because the
ASIC/FPGA interface is now inside the chip. Smaller PC boards results
in lower cost. More importantly, lower pin count on a chip results in
significantly lower costs because package size is a large percentage
of the overall per-piece cost of an ASIC.

2. Changing communication protocols. We've already seen flash
memory technology used extensively in modem designs so that the

 Introduction to CPLD and FPGA Design

 38

modems could be released before a communication protocol was
finalized. This gave modem manufacturers that used this technology
a head start in the market. When the protocol was finalized, the user
simply needed to update the modem firmware. This technology can
be used in switches and routers and other complicated
communication devices in the same way. Network device
manufacturers can ship devices before a protocol is fully defined. Of
course, they can do that now using discrete FPGAs in their design,
but this technology offers cost advantages by placing all logic, both
fixed and flexible, onto a single chip.

3. Bus interfaces and memory interfaces. These are other areas that
are good candidates for this technology. The FPGA functionality
allows the engineer to fine tune the logic while it is in the field. I
believe that the opportunity for this kind of market exists for very
new interfaces that may not be well defined or for which accurate
simulation models don't yet exist. However, I also believe that
accurate simulation models exist for older, well-defined interfaces
and so the technology will not be applied as much for supporting
these legacy interfaces.

4. Architecture enhancements. One interesting idea that this
technology further enables is the ability to make architectural
changes after a product has been manufactured and shipped. In my
experience, very little analysis of complex equipment is performed
to locate performance bottlenecks. This technology enables changes
to a system's architecture to be tested in the field. Those changes
that resulted in better operation can be incorporated into the
design. It may also be that different uses of a device may require
different designs. A device can be customized for particular
customers based on their environment and requirements.

5. Reconfigurable computing. The concept of using FPGA devices to
perform some of the algorithmic work of a general-purpose computer
has excited researchers for several years. Currently, the work is
mostly confined to universities and R&D labs because of the
complexity and challenges from the design of the software and the
hardware. In particular, it has been difficult to develop compilers or
interpreters that can take general algorithms, written in general
programming languages like C, and map the functionality onto
reconfigurable hardware. Should these issues be resolved, and
reconfigurable computing becomes successful, this technology could

 Introduction to CPLD and FPGA Design

 39

be an ideal platform for it because it enables the tight integration of
high-speed logic and reconfigurable logic on the same chip.

The example in Figure 39 shows a block diagram of an implementation
of a 32-tap FIR filter. The shaded blocks are implemented in FPGA cells while
the unshaded blocks are implemented in ASIC cells. The RAM is much easier to
implement, and more efficient to implement, as a RAM cell than in an FPGA.
By implementing the Address Generator and ROM in FPGA cells, the algorithm
can easily be reprogrammed.

Figure 39 Mixed ASIC/FPGA design

8. NEW TOOLS
The most significant area for the future, I believe, lies in the creation of

new development tools for FPGAs. As programmable devices become larger,
more complex, and include one or more processors, there is a huge need for
tools to take advantage of these features and optimize the designs.

Hardware designers can use hardware description languages (HDLs) like
Verilog to design their chips at a very high level. They then run their synthesis
and layout tools that optimize the design.

As FPGAs come to incorporate processors, the development tools need
to take software into account and need to optimize at a higher level of
abstraction. Hardware/software codesign tools will be a necessity.

Ultimately, there will have to be a melding of hardware and software
expertise in an FPGA designer. System level issues must be understood and
addressed, though perhaps not the particulars of FPGA routing resources or

 Introduction to CPLD and FPGA Design

 40

operating system task switching. Intelligent tools will be needed to synthesize
and optimize software just as it is now used to synthesize and optimize
hardware. These intelligent tools will work with libraries of pre-tested
hardware objects and software functions, leaving “low-level” C and Verilog
design necessary only for unique, specialized sections of hardware or software.

Software developers and their tools will be affected by this integration
too. To take full advantage of the hardware components in the programmable
arrays around them, compilers and RTOSes will need to make such integration
more seamless. If dynamic reconfigurability ever becomes commonplace, a
future RTOS may even get into the business of scheduling, placement, and
routing of hardware objects—perhaps treating them as distinct tasks with
communication mechanisms not unlike software tasks.

Essentially, platform FPGAs with embedded processors will take market
share away from ASICs, will become the dominant platform for embedded
system design, and will finally allow the fulfillment of the promise of and force
further development of hardware/software codesign tools.

9. CONCLUSION
This paper has presented an overview of CPLD and FPGA technologies,

and given guidelines for developing a chip based on my experience designing
for a large number of companies and a large number of applications. If all of
these guidelines are followed, the chances of creating a working chip in a short
time at minimum expense are excellent.

Bob Zeidman is the president of Zeidman Consulting

(www.ZeidmanConsulting.com), a contract research and development firm.
Since 1983, he has designed ASICs, FPGAs, and PC boards for RISC-based
parallel processor systems, laser printers, network switches and routers, and
other real time systems. His clients have included Apple Computer, Cisco
Systems, Intel, Quickturn Design Systems, and Texas Instruments. Among his
publications are technical papers on hardware and software design methods as
well as three textbooks — Designing with FPGAs and CPLDs, Verilog Designer's
Library, and Introduction to Verilog. He has taught courses at engineering
conferences throughout the world. Bob earned bachelor's degrees in physics
and electrical engineering at Cornell University and a master's degree in
electrical engineering at Stanford University.

	INTRODUCTION
	THE MASKED GATE ARRAY ASIC
	THE EVOLUTION OF PROGRAMMABLE DEVICES
	Programmable Read Only Memories (PROMs)
	Programmable Logic Arrays (PLAs)
	Programmable Array Logic (PALs)
	CPLDs and FPGAs
	Complex Programmable Logic Devices (CPLDs)
	CPLD Architectures
	Function Blocks
	I/O Blocks
	Interconnect
	Programmable Elements

	CPLD Architecture Issues
	Example CPLD Families

	Field Programmable Gate Arrays (FPGAs)
	FPGA Architectures
	Configurable Logic Blocks
	Configurable I/O Blocks
	Programmable Interconnect
	Clock Circuitry

	Small vs. Large Granularity
	SRAM vs. Anti-fuse Programming
	Example FPGA Families

	Choosing Between CPLDs and FPGAs

	DESIGN ISSUES
	Top-Down Design
	Keep the Architecture in Mind
	Synchronous Design
	Race conditions
	Delay dependent logic
	Hold time violations
	Glitches
	Bad clocking
	Metastability
	Allowable uses of asynchronous logic
	Asynchronous reset
	Asynchronous latches on inputs

	Floating Nodes
	Bus Contention
	One-Hot State Encoding

	DESIGN FOR TEST (DFT)
	Testing Redundant Logic
	Initializing State Machines
	Observable Nodes
	Scan Techniques
	Built-In Self Test
	Signature Analysis

	SIMULATION ISSUES
	
	Functional Simulation
	Static Timing Analysis
	Timing Simulation

	EMERGING TECHNOLOGIES
	Cores
	IP Cores
	Embedded Cores
	Processor cores
	DSP cores
	Embedded PHY cores

	Special I/O drivers
	New Architectures
	ASICs with embedded FPGA cells

	NEW TOOLS
	CONCLUSION

