
Embedded Systems Conference 2004 ESC-247 & ESC-267

 January 2004

High Assurance Security/Safety
for

Deeply Embedded, Real-time Systems

R. William Beckwith
Objective Interface Systems, Inc.

Herndon, Virginia, U.S.A.

bill.beckwith@ois.com

W. Mark Vanfleet
National Security Agency

Fort Meade, Maryland, U.S.A.

wvanflee@restarea.ncsc.mil

Lee MacLaren
Boeing Integrated Defense Systems

Seattle, Virginia, U.S.A.

lee.s.maclaren@f22.boeing.com

ABSTRACT
In this paper, we describe:

(i) a significant evolution to computer security architec-
tures and secure communications MILS (Multiple In-
dependent Levels of Security/Safety) capable of the
high assurance to support MLS (Multi-Level Secu-
rity) systems without the complexity of traditional
MLS systems,

(ii) the MILS RTOS Partitioning Kernel architecture,

(iii) the MILS secure communications Partitioning Com-
munications System architecture,

(iv) Real-time MILS CORBA, and

(v) industry efforts to provide implementations of this ar-
chitecture.

KEYWORDS
MILS, security, high assurance, Common Criteria, EAL-7,
Real-time CORBA, distributed systems

SECURITY EVOLUTION

Fail-First Patch-Later
Most commercial computer security architectures are a reac-
tive result of problems that have resulted from insecure op-
erating system and communications architectures.

This fail-first patch-later approach is inappropriate for the
communications infrastructure supporting mission-critical
telecommunications, data communications, utilities, trans-
portation, aerospace, defense, financial, and similar mission-
critical systems. The fail-first patch-later approach to
computer security has interfered with the ability of intellec-
tual property-based businesses such as the entertainment
industry to guarantee product access and use control that
is essential for recovering the large financial investments
used to create these information products.

In addition, more and more critical infrastructure systems
are accessible directly and indirectly through the Internet.
The Washington Post reported that the FBI is concerned
about the threat of terrorists attacking these critical infra-
structure systems by leveraging flaws in computer security
systems:

U.S. analysts believe that by disabling or taking
command of the floodgates in a dam, for exa mple,
or of substations handling 300,000 volts of elec-
tric power, an intruder could use virtual tools to
destroy real-world lives and property. They sur-
mise, with limited evidence, that al Qaeda aims to
employ those techniques in synchrony with “ki-
netic weapons” such as explosives.

Foundational Threats
Systems and application software is only as good as the
foundation it is built upon. If malicious software can suc-
cessfully attack the system’s foundation can render almost
any form of system or application security useless.

Foundational threats include:

§ Bypass—malicious software circumvents the system‘s
protection. If critical security software can be bypassed
there is no assurance that application programs using
security services are safe.

§ Compromise—malicious software can read private data
of other programs. If invasive software, like the spyware
so common in today’s Internet environment, can moni-
tor the data of other programs then entire system secu-
rity is suspect.

§ Tamper—malicious software modifies the sensitive data
of other programs. If tamper is possible then no applica-
tion is safe from viruses, worms, etc.

§ Cascade—malicious software causes failures to cascade
from one system component to another. If a failure of
one application can cause failure of another application
it may be possible for much greater system failure. A no-
table example of unintentional failure cascade is a Navy
cook who entered zero into a window that asked for a

Embedded Systems Conference 2004 ESC-247 & ESC-267

 January 2004

number one to ten. The application divided by zero.
This caused other applications failed. Eventually the
O/S failed. The hard drive got screwed up. The system
would not reboot. The ship was towed to shore.

§ Covert Channel—malicious software that can leak in-
formation through a communication channel that is a
side effect of the primary communication intent. For ex-
ample, by detecting the presence or absence of a mes-
sage an observer can derive information as to the activ-
ity of the communicating parties. If there are covert
channels available a malicious communicating party can
leak any information to the observing party by creating
intentional timing messages in an arranged pattern.

§ Virus—malicious software that runs at privileged levels
so that it can infect all parts of the system and other

systems. What is necessary is an architecture that en-
forces and manages the concept of least privilege. Then
when a compromise occurs it damage is local, its damage
can be detected, and recovered from. A big part of coun-
tering the computer virus problem is kicking device driv-
ers and applications out of privilege mode.

§ Subversion—malicious software is loaded by a user
who thinks the software is legitimate. All code needs to
be signed or it does not even load. The source of all
software must be traceable to the original author. Soft-
ware authors should follow good software engineering
practices. Preventing subversion is everyone's respon-
sibility.

The following example highlights the foundational threats in a notional architecture for a soft drink manufacturer:

Soft Drink Manufacturing
MILS PCS Security Architecture

Foundational
Threats
 Bypass
 Compromise
 Tamper
 Cascade
 Covert
 Channel
 Virus
 Subversion

D1

D2

D3

BSRV

RPM

E1

E2

E3

RS BV

BPM

Corporate
Internal Wild Internet

Policy Enforcement Independent of Node Boundaries

Product Formulary

Highly
Proprietary

Proprietary & Public
Business Data

Public Data

Public Data

Highly
Proprietary

Product Formulary

Business Data

Public Data

U

U

Figure 1

Successful soft drink manufacturers protect their product
formulary above all else. A competitor who gains access to

the formula to a successful drink can quickly steal market

Embedded Systems Conference 2004 ESC-247 & ESC-267

 January 2004

share. Thus, the soft drink manufacturer requires that prod-
uct formulary is kept separate from other data.

The problem is that without a strong foundation for guaran-
teeing that separation putting the product formulary on the
same computers that have other business data and public
data would subject their most prized secret to great peril
from the bypass, compromise, tamper, cascade, covert
channel, virus, and subversion threats. The soft drink
manufacturer would be forced to rely on physical separation
by prohibiting connecting the computers containing the
product formulary to any other computers.

Trusting the Foundation
An alternative to the fail-first patch-later approach is to
use an approach designed to protect highly secure military
systems. By mathematically verifying the core, trusted
components of the operating system and communications
system the potential for the system to fail its security objec-
tives is dramatically reduced.

The history of past efforts to produce mathematically veri-
fied general purpose systems software is littered with com-
mercial and financial failures. These efforts were all focused
on the achieving the higher assurance levels in the U.S.
DoD Orange Book.

The lower levels of security, in particular level C2, of the
Orange Book were a wide commercial success in that C2
certification became a common requirement for banking,
insurance, and other security conscious systems.

However, the Orange Book approach to high assurance
systems fell short in two areas critical to modern secure
systems software:

§ The higher assurance levels (B3 and A1) required both
mathematical verification of trusted system comp o-
nents and that those trusted systems components con-
tain significant security functionality (MAC, DAC, au-
diting, et al) that made mathematical verification of
those trusted system components virtually impossible.

§ Intersystem communication was not addressed in the
core security architecture of the Orange Book. These
trusted comp onents (and device drivers) typically all ran
in privilege node in order to meet performance objec-
tives in past years. Security critical application code
also ran in privilege mode. This was a nightmare to
evaluate. Such evaluations typically cost $100M.

MILS
MILS (Multiple Independent Levels of Security/Safety)
represents a relatively new (10 years) approach to building
secure systems in contrast to the older Bell and LaPadula
theories on secure systems that represent the foundational
theories of the DoD Orange Book.

MILS makes mathematical verification possible for the
core systems software by reducing the security functional-
ity to four key security policies:

§ Information Flow (between partitions both internally to a
RTOS and end to end between partitions in different
computing platforms, this requires authentication and
integrity for end to end protection)

§ Data Isolation (private data remains private, this may
require encryption for end to end protection)

§ Periods Processing (the microprocessor itself will not be
a covert channel to leak classified data to unclassified
processes as the processor move from partition to part i-
tion within a partitioning RTOS, to close covert chan-
nels on a communication link may require full period en-
cryption, dummy traffic generators, etc).

§ Damage Limitation (a failure in one partition will not cas-
cade to another partition, failures will be detected, con-
tained, and recovered from locally).

MILS requires that the Partitioning Kernel and the trusted
components of Middleware Services are implemented so
that the security capabilities have the following character-
ics:

§ Non-bypassable (the security functions cannot be cir-
cumvented)

§ Evaluatable (the security functions small enough and
simple enough to be mathematically verified and evalu-
ated)

§ Always Invoked (the security functions are invoked
each and every time)

§ Tamperproof (subversive code cannot alter the function
of the security functions by exhausting resources, over-
running buffers, or other forms of making the security
software fail)

A convenient acronym for these characteristics is NEAT.
The MILS architecture allows the creation of application
code that is NEAT. While most MILS-based application
code is freed from this level of rigor because it is protected
from and limited from damaging other applications, some
applications will need the highest level of assurance. These
partitions with these applications will need to be NEAT.
Such partitions are referred to as Reference Monitors.

The MILS architecture was developed to resolve the diffi-
culty of certification of high assurance systems, by separat-
ing out the security mechanisms and concerns into man-
ageable components. A MILS system isolates processes
into partitions, which define a collection of data objects,
code and system resources. These individual partitions can
be evaluated separately, if the MILS architecture is imple-
mented correctly. This divide and conquer approach exp o-
nentially reduces the proof effort for secure systems. To
support these partitions the MILS architecture is divided
into three layers:

§ Partitioning Kernel—a very small (4,000 lines of code
or less) mathematically verified piece of software

Embedded Systems Conference 2004 ESC-247 & ESC-267

 January 2004

trusted to guarantee separation of time and space part i-
tioning,

§ Middleware Services—most of the traditional operating
system functionality including device drivers and a Par-
titioning Communications System to extend the scope
of the separation provided by the Partitioning Kernel
to inter-system communication, and

§ Applications—responsible for enforcing application
layer security policies.

With most operating systems it is very difficult to prove
that these requirements are being met. Recently, however,
the MILS architecture has emerged in which a micro kernel
is responsible for:

§ partitioning the computer into separate address spaces
and scheduling intervals,

§ guaranteeing isolation of the partitions, and

§ supporting carefully controlled communications among
them.

Because that is all the kernel does, it can be very small –
less than 4,000 lines of code. This makes it amenable to the
formal analysis methods, comprehensive documentation,
and exhaustive testing required for certification. The parti-
tioning kernel design is also very helpful in achieving flight
safety approval under DO-178B, and in fact that is where
this development got started.

PARTITIONING KERNEL
If we want to run a security function on the same computer
as our application programs, where should it reside? In
order to be tamper-proof, it must be in a separate address
space from any un-trusted application code. And in order
to be non-bypassable, it must be part of every input or out-
put service request issued by an application. The natural
solution, then, seems to be to put it in the operating system.

But mixing security functions and other code in the operat-
ing system’s privileged kernel address space is less than
optimal for two reasons:

§ The security functions are often application-specific.
And while many RTOSs are designed to allow some user
customization, it would really be better not to have to
make changes in the most sensitive part of the system.

§ Since any code in the same address space as a security
function could potentially interfere with the kernel’s en-
forcement of security, the entire kernel must be analyzed
for weaknesses and malicious code.

Enter the Partitioning Kernel. This is actually not new
technology. John Rushby was describing the basic con-
cepts at least as early as 1981. But it is new to the commer-
cial RTOS world, where performance traditionally has
trumped all other concerns.

Any operating system that supports multiple address
spaces supports the concept of partitions and provides
some measure of isolation, both between partitions, and
between any partition and the OS. A partition requests an
OS service by “trapping” to the kernel, i.e. by executing a
special instruction that causes an interrupt. This puts the
computer in kernel mode, which allows the OS to do what-
ever it needs to do, including reading or writing I/O control
registers or even modifying the memory map. From here,
the most efficient way for the OS to provide the service is to
execute all of the service code in kernel mode. This saves
context switches, but it places a lot of code in the kernel
that could perhaps reside elsewhere.

What Rushby proposed was for the kernel to support care-
fully controlled communications between non-kernel parti-
tions (Figure 2). The communication channels allow one
partition to provide a service to another with minimal inter-
vention by the kernel. RTOS services can thus be moved
into non-privileged or partially privileged partitions, leaving
behind only those functions that must execute in kernel
mode. Figure 2 shows isolated partitions communicating
through kernel-mediated channels. These channels are es-
tablished statically when the partitions are created.

Figure 2

The goal of moving code out of the kernel is to make the
kernel small enough to be verified by formal analysis and
proof-of-correctness methods. A formal methods mathema-
tician at the National Security Agency (NSA) has said that
1,000 lines of code would be ideal, but they would be willing
to attempt something as large as 4,000 lines. The smallest
commercial kernel is near the high end of that range.

Obviously, a system built on a partitioning kernel will suffer
more context switching overhead than would occur in a
more conventional design. This has been made more toler-
able by very careful design of the inter-partition communi-
cation services, and also by hardware advances. In the
current generation of PowerPC microprocessors for example,
a full partition context switch can be completed in less than
a microsecond. That means that 10,000 partition switches
per second will consume less than one percent of the proc-
essor throughput. Partitioning is not free, but the cost has
become much more tolerable.

Embedded Systems Conference 2004 ESC-247 & ESC-267

 January 2004

So a practical, high-assurance, real time partitioning kernel
is now within reach. This kernel guarantees that partitions
are isolated from each other, and that only explicitly author-
ized communication occurs among them.

Safety and Security
The military market for high-assurance security systems
alone has not been large enough for the commercial RTOS
vendors to justify investing in expensive evaluations. How-
ever, the commercial avionics market has attracted their in-
vestment dollars, especially with the imminent adoption of
Global Air Traffic Management (GATM) rules.

The ARINC-653 standard was written specifically for avion-
ics computing, especially where safety of flight was a con-
cern. It specifies an RTOS design very much like the parti-
tioning kernel just described, and with exactly the same
goal: to allow two or more programs to share a computer
while guaranteeing that they cannot interfere with each
other. In an ARINC-653 system, both memory and process-
ing time are statically allocated to partitions using configu-
ration tables. A static network of communication channels
is also established among the partitions. With the excep-
tion of a few kernel services, such as reading the real time
clock, all input and output for a partition go through these
channels.

ARINC-653 specifies a generic framework for enforcing an
application-specific information flow control security policy.
Information can flow from one partition to another only in
the ways specified in the static configuration tables, and the
partitioning kernel guarantees that this is so.

Middleware Services
The middleware services layer provides for an extended
scope of the separation concepts introduced by the part i-
tioner. Middleware services are concerned about end-to-
end data processing, and not just the single microprocessor
data processing of the Partitioning Kernel. At the middle-
ware layer, we begin to enforce the more traditional con-
cepts of information flow. Each partition/address space in
the system, no matter which microprocessor it is resident
on, has a unique security label/classification. The system
architect uses these labels to define the authorized commu-
nication between components. The labeling of the partitions
and communication channels is used to satisfy the security
policy. The middleware level is responsible for ensuring
end-to-end security, through the following:

1. Labeling. The middleware layer must ensure that mes-
sages sent between individual partitions are correctly
labeled with the sender’s security classification.

2. Filtering. The middleware layer is responsible for filter-
ing out any messages that are not appropriately la-
beled before delivering them to the recipient.

3. Maintaining Information Flow Controls. The system
architect designs the system with specific authorized

information flow restrictions, and it is these restric-
tions that the middleware layer enforces.

At the middleware layer we can introduce the concept of
authorized information flow. If the system architect designs
the system so that two partitions can communicate, then
information flow between these partitions is authorized. A
system can be designed to be a collection of isolated en-
claves, where partitions exist within a single enclave and
there is no information flow between enclaves. The MILS
architecture will now allow the use of computer security
measures to build systems and achieve the same assurance
levels as these “physically is olated component” systems.

In the MILS architecture, all O/S code not necessary for
performing Partitioning Kernel functions was moved out
of privileged mode. Thus, by default, O/S service code (e.g.
device drivers, file system, POSIX) has moved into the mid-
dleware layer. This is done to prevent various software and
network attacks from elevating a processes privilege to an
unauthorized level. Each enclave’s partition can be config-
ured to utilize a single set of O/S services code with it
evaluated according to the enclave’s requirements.

Application Layer
MILS empowers the application layer to protect itself. And
the application layer is responsible for enforcing application
security policies. It is at this layer that the system provides
for application-specific security policies. Any partition that
processes data from more than one secure application
realms must be considered a privileged partition.

PARTITIONING COMMUNICATIONS

SYSTEM
The Partitioning Communication System is a portion of
MILS Middleware responsible for all communication be-
tween MILS notes.

The purpose of the PCS is to extend the protected environ-
ment of MILS kernel to multiple nodes. The PCS was de-
veloped with a similar minimalist philosophy to MILS Parti-
tioning Kernel.

The PCS extends the four MILS policies to include end-to-
end versions of these policies, but only these policies.

§ End-to-End Information Flow

§ End-to-End Data Isolation

§ End-to-End Periods Processing

§ End-to-End Damage Limitation

Thus, the PCS Leverages the MILS Partition Kernel to en-
able the application layer entities to enforce, manage, and
control their own application level security policies in such
a manner that the application level security policies are non-
bypassable, evaluatable, always-invoked, and tamper-proof.

Embedded Systems Conference 2004 ESC-247 & ESC-267

 January 2004

The result is a communications architecture that allows the
security kernel and the PCS to share the responsibility of
security with the application.

PCS must provide the following capabilities:

§ Strong identity of nodes within enclave

§ Cryptographic separation of levels

§ Cryptographic separation of communities of interest

§ Bandwidth provisioning & partitioning

§ Secure configuration of all nodes in enclave

§ Secure application instantiation

§ Secure clock synchronization

§ Signed partition images

§ Elimination of covert channels (both storage and timing)

REAL-TIME MILS CORBA
The synthesis of MILS and Real-time CORBA yield an un-
expected benefit. The flexibility of Real-time CORBA allows
easier realization of MILS protection.

The MILS architecture is all about location awareness. A
properly designed secure system built with MILS will by

intent separate appropriate functions into separate part i-
tions to take advantage of the MILS partitioning protection.

Real-time CORBA is all about location transparency. The
application code of a properly designed distributed system
built with Real-time CORBA will not be aware of the location
of the different parts of the system. This great flexibility can
be used to optimize performance by rearranging what parti-
tions each system object executes in. Mistakes in system
layout can be corrected late in the development cycle.

The combination of MILS with Real-time CORBA allows
system engineers to rearrange the location of system func-
tions in order to better take advantage of the MILS parti-
tioning protection.

MILS CAN HANDLE MLS
While a MILS Partitioning Kernel is quite ignorant of the
traditional Multi-Level Security (MLS) required for military
and intelligence systems MILS is quite capable of support-
ing MLS systems. MILS can be used to construct such
systems because of the strong separation guarantees the
MILS architecture and certification process.

High Assurance
MILS Architecture

S,TS

(MLS)

TS

(MSL)

S

(MSL)

CORBA
Middleware
OS Services

U
ser M

ode

. . .

Application
Partitions

CORBA
Middleware
OS Services

CORBA
Middleware
OS Services

Processor

RTOS Micro Kernel (MILS)
Mode Supervisor
MMU, Inter-Partition

Communications,
Interrupts

TS

(MSL)

MLS
PSC / NIU

Box High
Display
Driver

CORBA
Middleware
OS Services

MSL
Hard Drive

Trusted Path
MLS
KBD

Driver

Figure 3

Embedded Systems Conference 2004 ESC-247 & ESC-267

 January 2004

Figure 3 shows the realization of a multi-level security system using the MILS architecture. The green blocks are user level
partitions. Only the Micro Kernel (the Partitioning Kernel) can access any privileged hardware capabilities. Accordingly the
device drivers are all shown executing outside of system privilege because they are not in the micro kernel (Partitioning Ker-
nel) address space.

INDUSTRY SUPPORT
At least three commercial RTOS vendors either have built,
or are in the process of building, MILS-compliant operating
systems:

§ Green Hills Software, Inc.

§ LynuxWorks, Inc.

§ Wind River Systems, Inc.

The U. S. Air Force, Boeing, Lockheed-Martin, Objective
Interface Systems, Rockwell Collins, University of Idaho,
and the National Security Agency are partnered in the effort
to integrate several MILS security separation kernels with a
Real-time CORBA middleware implementation. The results
of this effort should support an OMG standardization effort
for high assurance Real-time MILS CORBA.

REFERENCES
[1] R. W. Beckwith, E. D. Jensen, D. Allen, et al, Real-time

CORBA 2.0: Dynamic Scheduling Final Adopted
Specification, Object Management Group, ptc/01-08-34
(Aug 2001).

[2] D. E. Bell & L. J. LaPadula, Secure Computer Systems,
Technical Report ESD TR-75-306, MITRE Corporation,
(Mar 1976).

[3] W. R. Bevier, “KIT: A Study in Operating System Veri-
fication”, Technical Report 28, Computational Logics
Inc. (Aug 1988).

[4] J. Currey, R. W. Beckwith, et al, Real-time CORBA 1.1
Specification, Object Management Group, formal/02-
08-02 (Aug 2002).

[5] Common Criteria for Information Technology Secu-
rity Evaluation, Version 2.1 (19 Sep 2000).

[6] Department of Defense Trusted Computer System
Evaluation Criteria (The Orange Book), DoD 5200.28-
STD

[7] E. Dube, and M. Weller, “A Path to Multiple Levels of
Security”, Proceedings of the Information Assurance
Solutions Working Symposium (Dec 2000).

[8] J. W. Freeman, R. B. Neely, & M. A. Heckard, A Vali-
dated Security Policy Modeling Approach (May 1994).

[9] J. A. Goguen and J. Meseguer, “Inference Control and
Unwinding,” Proceedings of the Symposium on Secu-
rity and Privacy, Oakland, CA, (Apr 1984).

[10] K. Loepere, “OSF Mach Kernel Principles, Final Draft”,
Open Software Foundation and Carnegie Mellon Uni-
versity, (3 May 1993).

[11] R. Nelson, GTE, NSA R2 Research Contract (1994).

[12] Objective Interface Systems, Inc., ORBexpress RT,
http://www.ois.com.

[13] R. W. Olsen & E. E. Cale, Real-time CORBA Trade
Study, “Volume 6 – 2001 Supplement”, Boeing Phantom
Works Advanced Information Systems (9-5430),
Document Number D204-31159-6 (22 Jun 2001).

[14] J. Rushby, The Design and Verification of Secure Sys-
tems. 8th ACM Symposium on Operating System Prin-
ciples, December 1981. ACM Operating Systems Re-
view, Vol. 15, No 5.

[15] J. Rushby, “Noninterference, Transitivity, and Channel-
Control Security Policies,” SRI Computer Science
Laboratory Technical Report CSL-92-02 (Dec 1992).

[16] J. Rushby, Stanford Research Institute, NSA R2 Sepa-
ration Kernel Conference (1994).

[17] J. Rushby, “A Trusted Computing Base for Embedded
Systems,” Proceedings of the 7th Department of De-
fense/NBS Computer Security Conference, pp. 294-311
(Sep 1984).

[18] W. M. Vanfleet, Kernel, Middleware, and Application
Level Security Policy Guidance For Deeply Embedded
Systems (Jun 2000).

[19] W. M. Vanfleet, Designing INFOSEC Equipment with
Separation Kernels, Design Guidance INFOSEC
Equipment Seminar ND-285 (Apr 2002).

[20] M. Weller & W. M. Va nfleet, Computer Security In The
Joint Tactical Radio, MILCOM 2001.

[21] B. Gellman, “Cyber-Attacks by Al Qaeda Feared, Ter-
rorists at Threshold of Using Internet as Tool of
Bloodshed, Experts Say,” Washington Post, Page A01,
(June 27th, 2002).

[22] IATF Release 3.1 , National Security Agency, (Septem-
ber 2002).

[23] Partitioning Kernel Protection Profile (PKPP) , (May
2003).

[24] J. Alves-Foss, The Multiple Independent Levels of
Security/Safety (MILS) Architecture, Personal Notes

[25] Common Criteria for Information Technology Security
Evaluation, Version 2.1, (August 1999).

[26] J.M. Rushby, “Proof of Separability: A verification
technique for a class of security kernels”, Proc. Inter-

Embedded Systems Conference 2004 ESC-247 & ESC-267

 January 2004

national Symposium on Programming, Lecture Notes
in Computer Science, 137:352–367, (1982).

[27] W.M. Vanfleet, et al, An Architecture for Deeply Em-
bedded, Provable High Assurance Applications, (May
2003).

[28] M. Paulk, C. Weber, S. Garcia, M. Chrissis, M. Bush,
Key Practices of the Capability Maturity Model , Ver-
sion 1.1, Technical Report CM

