
92 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

COSYN: Hardware–Software Co-Synthesis of
Heterogeneous Distributed Embedded Systems

Bharat P. Dave,Member, IEEE,Ganesh Lakshminarayana, and Niraj K. Jha,Fellow, IEEE

Abstract— Hardware–software co-synthesis starts with an
embedded-system specification and results in an architecture
consisting of hardware and software modules to meet
performance, power, and cost goals. Embedded systems
are generally specified in terms of a set of acyclic task graphs.
In this paper, we present a co-synthesis algorithm COSYN,
which starts with periodic task graphs with real-time constraints
and produces a low-cost heterogeneous distributed embedded-
system architecture meeting these constraints. It supports
both concurrent and sequential modes of communication and
computation. It employs a combination of preemptive and
nonpreemptive static scheduling. It allows task graphs in which
different tasks have different deadlines. It introduces the concept
of an association array to tackle the problem of multirate
systems. It uses a new task-clustering technique, which takes
the changing nature of the critical path in the task graph
into account. It supports pipelining of task graphs and a mix
of various technologies to meet embedded-system constraints
and minimize power dissipation. In general, embedded-system
tasks are reused across multiple functions. COSYN uses the
concept of architectural hints and reuse to exploit this fact.
Finally, if desired, it also optimizes the architecture for power
consumption. COSYN produces optimal results for the examples
from the literature while providing several orders of magnitude
advantage in central processing unit time over an existing optimal
algorithm. The efficacy of COSYN and its low-power extension
COSYN-LP is also established through their application to very
large task graphs (with over 1000 tasks).

Index Terms—Allocation, embedded systems, hardware-soft-
ware co-synthesis, low power, scheduling, system synthesis.

I. INTRODUCTION

A DVANCEMENTS in very large scale integration (VLSI),
computer-aided design, and packaging areas have re-

sulted in an explosive growth in embedded systems. Het-
erogeneous distributed architectures are common for such
systems, where several processors, application-specific inte-
grated circuits (ASIC’s), and field-programmable gate arrays
(FPGA’s) are interconnected by various types of communi-
cation links, and multiple tasks are concurrently run on the
system. Each task can be executed on a variety of software
and hardware platforms with different dollar costs. Finding

Manuscript received September 24, 1997; revised February 20, 1998 and
June 10, 1998.This work was supported in part by Bell Laboratories, Lucent
Technologies and in part by the National Science Foundation under Grant
MIP-9423574.

B. P. Dave is with Bell Laboratories, Lucent Technologies, Holmdel, NJ
07733 USA.

G. Lakshminarayana is with Computer and Communications Research
Laboratories (CCRL), NEC, Princeton, NJ 08540 USA.

N. K. Jha is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA.

Publisher Item Identifier S 1063-8210(99)01550-4.

an optimal hardware–software architecture entails selection
of processors, ASIC’s, FPGA’s, and communication links
such that the architecture cost is minimum and all real-
time constraints are met. For low-power embedded systems,
the aim is to obtain an architecture with minimum aver-
age power dissipation while meeting all real-time and peak
power constraints. Hardware–software co-synthesis involves
allocation, scheduling, and performance estimation. Alloca-
tion determines the mapping of tasks to processing elements
(PE’s) and inter-task communications to communication links.
Scheduling determines the sequencing of tasks mapped to a
PE and communications on a link. Performance estimation
determines the finish time of each task in the embedded-system
specification and the quality of the system in terms of dollar
cost, power consumption, fault tolerance, etc. Both allocation
and scheduling are known to be NP complete [1]. Therefore,
optimal co-synthesis is computationally hard.

Emphasis on distributed embedded-system architecture co-
synthesis and partitioning is fairly recent [2]–[12]. The optimal
co-synthesis approaches are mixed-integer linear programming
(MILP) [7] and exhaustive [8]. These are, however, applicable
to very small task graphs (consisting of ten or so tasks).
The heuristic approaches are iterative and constructive. In
the former, an initial solution is iteratively improved through
various moves. In the latter, the solution is built step-by-step.
The iterative procedure in [9] and [10] considers only one
type of communication link and does not allow mapping of
each successive copy of a periodic task to a different PE.
The iterative synthesis technique for low-power systems in
[11] ignores inter-task communications, and is restricted to
periodic task graphs for which the deadline is equal to the
period. The constructive fault tolerance procedure in [12]
does not support communication topologies such as bus, local
area network (LAN), etc., and is not suitable for multirate
embedded systems, e.g., multimedia systems.

We have developed a heuristic-based constructive co-
synthesis technique called COSYN, which includes allocation,
scheduling, and performance estimation steps as well as power
optimization features. COSYN takes as an input periodic
acyclic task graphs and generates a low-cost heterogeneous
distributed embedded-system architecture meeting real-time
constraints. It is suited to both small- and large scale real-time
embedded systems. Application of this technique to several
examples from the literature and real-life telecom transport
systems shows that it compares very favorably with known
co-synthesis algorithms in terms of central processing unit
(CPU) time, quality of solution, and number of features.

1063–8210/99$10.00 1999 IEEE

DAVE et al.: COSYN: HARDWARE–SOFTWARE CO-SYNTHESIS OF HETEROGENEOUS DISTRIBUTED EMBEDDED SYSTEMS 93

Fig. 1. Task graph, resource library, execution/communication vectors, and the finish-time estimation (FTE) graph.

The paper is organized as follows. Section II provides
preliminaries. Section III describes the steps of our co-
synthesis algorithm. Section IV describes the low-power
extension. Section V gives experimental results. Section VI
gives the conclusions.

II. PRELIMINARIES

In this section, we give the basic definitions and concepts
which form the basis for the co-synthesis framework.

A. Task Graphs

Each application-specific function is made up of several se-
quential and/or concurrentjobs. Each job is made up of several
tasks. A task contains both data- and control-flow information.
The embedded system is usually described through a set of
acyclic task graphs. Nodes of a task graph represent tasks.
Tasks communicate data to each other indicated by a directed
edge between them. In this paper, we focus on periodic task
graphs with real-time constraints. Each periodic task graph has
an earliest start time (EST), period, and deadlines, as shown,
for an example, in Fig. 1(a). Each task of a periodic task graph
inherits the graph’s period and can have a different deadline.

B. Definitions and Basic Concepts

The PE (link) library is a collection of all available PE’s
(communication links). The PE and link libraries together form
the resource library. The resource library and its costs for two
general-purpose processors,PE1 and PE2, and two links,L1
and L2, are shown in Fig. 1(b).

We define execution_vector where
indicates the execution time of task on PE from

the PE library. denote the minimum
(maximum) entries in this vector. In Fig. 1(c), for simplicity,
all tasks are assumed to have the same execution vector.

Execution vectors are derived from laboratory measurements
or simulation or through worst-case delay estimation tools
[13]. We define preference_vector
where indicates preferential mapping for task. If is 0,

cannot be executed on PE, and 1 if there are no constraints.
Similarly, we define exclusion_vector
where indicates that tasks and have to be allocated
to different processors, and indicates otherwise.

A cluster of tasks is a group of tasks all of which are
allocated to the same PE. For example, Fig. 1 (d) shows three
clusters: , , and . We define preference_vector
of cluster to be the bit-wise logicalAND of the preference
vectors of all the tasks in the cluster. This vector indicates
which PE’s the cluster cannot be allocated to. Similarly, we
define exclusion_vector of cluster to be the bit-wise
logical OR of the exclusion vectors of all the tasks in the
cluster. Task is said to be preference-compatible with cluster

if the bit-wise logical AND of the preference vector of
cluster and task does not result in a vector with all
elements zero. A zero-vector makes the cluster unallocatable to
any PE. Task is said to be exclusion-compatible with cluster

if the th entry of the exclusion vector of is zero. This
indicates that tasks in cluster can be co-allocated with task

. Task and cluster are simply calledcompatible, if
is both preference- and exclusion-compatible with cluster.

We define communication_vector
where indicates the time it takes to communicate

the data on edge on communication link from the link
library. The communication vector for each edge in the task
graph of Fig. 1(a) is given in Fig. 1(c).
denote the minimum (maximum) entries in this vector. This
vector is computeda priori for various types of links as
follows. Let be the number of bytes that need to be
communicated on edge , and be the number of bytes per
packet that link can support, excluding the packet overhead.

94 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

We define access_time_vector where
represents the access time per packet withnumber

of communication ports on link. Suppose the link under
consideration has ports. Let be the communication time
of a packet on link . Then

This equation is applicable to a link which requires an access
time overhead for each packet. However, some links support a
burst mode of communication, where multiple packets can be
transmitted with only a one-time link access overhead. Thus,
this overhead can be reduced in such cases. Initially, since
the actual number of communication ports on the links is not
known, we use an average number of communication ports
(specifieda priori) to determine the communication vector.
This vector is recomputed after each allocation, considering
the actual number of ports on the link.

We define average_power_vector
where indicates the average power consumption of task

on PE . Similarly, we define peak_power_vector
. Preference, exclusion, average and peak

power vectors can be similarly defined for communication
edges and links. We also take into account the quiescent power
of a PE, link, ASIC and FPGA, which indicates its power
consumption at times when no task (or communication) is
being executed on it.

The storage requirements are of different types: program
storage, data storage, and stack storage. For each task
mapped to software, memory needs are specified by a
memory vector. The memory vector of task is defined as:
memory_vector [program_storage , data_storage ,
stack_storage].

For each available processor, its cost, supply voltage, av-
erage quiescent power consumption, peak power constraint,
and attributes such as memory architecture, number of com-
munication ports, processor-link communication, and cache
characteristics are assumed to be specified. Also, the preemp-
tion overhead for each processor is specifieda priori along
with its execution time and average and peak power con-
sumption. For each ASIC, its cost, supply voltage, available
pins, available gates, and average and peak power dissipation
per gate are assumed to be specified. For each FPGA, its
cost, supply voltage, average quiescent power, available pins,
and the maximum number of flip-flops or combinational logic
blocks (CLB’s) or programmable functional units (PFU’s) are
assumed to be specified. The boot memory also needs to be
allocated for the FPGA. Generally, all flip-flops/CLB’s/PFU’s
are not usable due to routing restrictions. Based on our
experience, we assume only 70% (this percentage is user-
specifiable) are actually usable. The user can also specify the
percentage of package pins that can be used for allocation
(default is 80% to allow for pins for power, ground, and due
to routing restrictions).

Generally, several tasks are reused across multiple func-
tions. To exploit this fact, architectural hints are derived during
task graph generation based on prior experience, nature of
embedded-system task graphs, and type of resource library. If

Fig. 2. The COSYN procedure.

the hint marks the task or sub-task-graph for reuse, the co-
synthesis algorithm is run for each such task/sub-task-graph
and the solution is stored as an architectural template. During
allocation, if such a task/sub-task-graph is being considered,
then, if necessary (the template may already be in the partial
architecture), we add the architectural template to the partial
architecture and proceed further.

III. T HE COSYN ALGORITHM

We next provide an overview of COSYN, followed by
details. Fig. 2 presents the pseudo-code for COSYN. First, task
graphs, system/task constraints, and resource library are parsed
and appropriate data structures created. The hyperperiod of the
system is computed as the least common multiple (LCM) of
the period of various task graphs. Traditionally, ifperiod is
the period of task graphthen [hyperperiod period] copies
are obtained for it [14]. However, this is impractical from
both co-synthesis CPU time and memory requirements point-
of-view, specially for multirate task graphs or task graphs
with co-prime periods where this ratio may be very large.
We tackle this problem using the concept of anassociation
array. Task clusteringinvolves grouping of tasks to reduce
the search space for allocation [12]. Tasks in a cluster get
mapped to the same PE. Clusters are ordered based on their
priority. The outer loopof a procedure selects a cluster, and
the inner loop evaluates various allocations for each selected
cluster. For each cluster, anallocation arrayconsisting of the
possible allocations is created. Inter-cluster edges are allocated
to resources from the link library.

We employ a combination of preemptive and nonpreemp-
tive static scheduling. We take into account the operating
system overheads, e.g., interrupt overhead, context-switch,
remote procedure call (RPC), etc., through a parameter called
preemption overhead. Incorporating scheduling into the inner
loop facilitates accurate performance evaluation. As part of

DAVE et al.: COSYN: HARDWARE–SOFTWARE CO-SYNTHESIS OF HETEROGENEOUS DISTRIBUTED EMBEDDED SYSTEMS 95

performance evaluation, FTE uses the longest path algorithm
to check whether specified deadlines of tasks are met. The
allocation evaluationstep compares the current allocation
against previous ones based on total dollar cost. If there is
more than one allocation with equal dollar cost, we pick
the allocation with the lowest average power consumption.
Memory requirements and peak power dissipation can also
be used to further evaluate the allocations. Next, we describe
each step of COSYN in detail.

A. The Association Array

We use two approaches to tackle the problem of large
number of task copies.

In the first approach, we shorten some of the periods by a
small user-adjustable amount (up to 3% used as a default)
to reduce the hyperperiod [14]. This is frequently useful
even if the periods are not co-prime, but the hyperperiod is
large. Doing this usually does not affect the feasibility of co-
synthesis or the architecture cost. We first identify the task
graphs which require a large number of copies. We rank such
task graphs in the order of decreasing number of copies. We
pick the highest ranked task graph and adjust its period up to
the user-defined threshold, and check its impact on the number
of copies for the other task graphs. We proceed down the rank
and stop when we bring the number of required copies below
a specified threshold.

In the second approach, we use the concept of association
array to avoid the actual replication of task graphs. This array
has an entry for each task of each copy of the task graph such
as the PE to which it is allocated, its priority level, deadline,
best-case projected finish time (PFT), and worst-case PFT.
The deadline of the th instance of a task is offset by
multiplied by its period from the deadline in the original task.
This concept allows allocation of different task graph copies to
different PE’s, if desirable, to derive an efficient architecture.
It also supports pipelining of task graphs, as explained later.

If a task graph has a deadline less than or equal to its
period, there will be only one instance of the task graph in
execution at any instant. Such a task graph needs only the
horizontal dimension in the association array. If a task graph
has a deadline greater than the period, there can be more than
one instance of this task graph in execution at some instant. For
such tasks, the vertical dimension corresponds to concurrent
execution of different instances of the task graph.

In preprocessing, for each task graph with a deadline greater
than its period, we find the association array depth and the
modified period. The depth is given by(deadline of task
graph period) and the modified period by the depth of
the array multiplied by the original period. A task graph with
a deadline less than or equal to its period does not require any
modification of the period. The hyperperiod is computed based
on the modified periods. The rows of the association array
represent the concurrent existence of different instances of the
task graph. Each row inherits the modified period of the task
graph. The columns of the association array represent various
copies of the task graph in the hyperperiod. Fig. 3 gives the
pseudo-code for the association array formation procedure.

Fig. 3. The association array formation procedure.

Copy 1 of the task in the first row inherits theEST and
deadline from its task graph. If there are multiple tasks with
different deadlines in the original task graph, then each task in
the association array inherits the corresponding deadline from
the task graph. The best- and worst-case start and finish times
of the first copy are determined through scheduling and FTE.
For the remaining copies, all parameters are set based on those
of the first copy, e.g., theESTof the th copy the ESTof
copy modified period.

As an example, consider task graphs 1 and 2, shown in
Fig. 4(a). For simplicity, assume that there is only one task
in each task graph and only one type of PE is available. The
execution times of the tasks on this PE are shown next to the
corresponding nodes. There could be up to four instances of
task graph 1 executing at any instant. The modified period
of task graph 1 is 40 and the hyperperiod of task graphs 1
and 2 is 80. The association array for task graphs 1 and 2 is
shown in Fig. 4(b). The start time of concurrent instances of
task graph 1 is staggered by its period 10. The start time of the
second copy of each instance is offset by the modified period.
The deadline of the second copy of task graph 1-1 is set equal
to the sum of its start time and corresponding deadline, i.e.,

. The priority level of each task is calculated by
subtracting its deadline from its execution time, as explained
later. Hence, the priority level of copy 2 of task graph 1-1 is
equal to . Fig. 4(c) illustrates the associated
architecture.

Another limitation of Lawler and Martel’s approach [14]
is that the execution of all copies of all tasks must complete
by the hyperperiod. However, this puts significant restrictions
on the scheduler. Tasks, which do not start atEST ,

96 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

Fig. 4. A two-dimensional association array.

may have the execution interval of their last copy exceed the
hyperperiod. To address this problem, the deadline of the last
copy of the task graph can be set equal to the hyperperiod.
However, this approach generally results in an increase in
system cost. To address this concern, we use the concept of
hyperperiod spill, which is the portion of the execution interval
which exceeds the hyperperiod. In order to ensure that the
resulting schedule is feasible and resources are not overused,
we must make space for the required hyperperiod spill at the
beginning of the hyperperiod (since the schedule derived for a
hyperperiod is repeated for successive hyperperiods). Hence,
we enhance the priority level of such tasks by adding the
hyperperiod to it. Doing this gives such tasks much higher
priority than other tasks in the system, enabling them to find
a suitable slot at the beginning of the next hyperperiod. If
the required spill is still not available after the priority-level
enhancement (this could be due to competing tasks which
either require a spill or must start at the beginning of the
hyperperiod), we upgrade the allocation. This approach is used
for scheduling the second copy of task graph 1-4 in Fig. 4(b).
Copy 2 of task graph 1-4 requires a hyperperiod spill of ten
time units. The priority level of this copy is 90 and that
of task graph 2-1 copy 1 is 54. The priority level of the
former is enhanced by adding the hyperperiod to its priority
level, i.e., . Thus, this copy now has a higher
priority level than that of task graph 2-1 copy 1. Therefore,
the required hyperperiod spill is allocated at the beginning of
the hyperperiod. Hence, task graph 2-1 starts execution at time
unit 10 instead of time unit 0 and completes by time unit 16.

When possible, concurrent instances of task graphs are allo-
cated to the same set of PE’s and links to achieve pipelining.
For example, consider the periodic task graph, resource library,
and execution/communication vectors, shown in Fig. 5(a).
Since its deadline is 60 and period is 15, four concurrent
instances of the task graph may be running, as shown in
Fig. 5(b). These concurrent periodic task graphs could be
allocated, as shown in Fig. 5(c), to achieve a pipelined ar-
chitecture.L1 , L1 andL1 are different instances of linkL1.
Pipelining is done for the task graph which requires concurrent
execution. This is either determined by architectural hints or
based on its period and deadline. The pipeline stage size is con-
trolled by a user-specified parameter called pipeline_threshold
(default is equal to the period of the task graph). It is used

Fig. 5. Task-graph pipelining.

in a manner similar to the way the cluster size threshold is
used during task clustering, as explained in the next section.
The allocation of various pipeline stages is done during the
allocation step by creating an allocation array. The same stages
of different concurrent instances of task graphs are allocated
to the same PE.

B. Task Clustering

Our clustering technique addresses the fact that different
paths may become the longest path through the task graph at
different points in the clustering process since the length of
the longest path changes after partial clustering. We extend
the method given in [12] for this purpose. Our procedure also
supports task graphs in which different tasks have different
deadlines. We first assign deadline-based priority levels to
tasks and edges using the following procedure. A sink task
always has a specified deadline, whereas a nonsink task may

DAVE et al.: COSYN: HARDWARE–SOFTWARE CO-SYNTHESIS OF HETEROGENEOUS DISTRIBUTED EMBEDDED SYSTEMS 97

Fig. 6. The critical path-based clustering procedure.

or may not. We define to be equal to the deadline of
task if the deadline is specified, and otherwise.

1) Priority level of sink task deadline .
2) Priority level of edge priority level of destination

node .
3) Priority level of nonsink task (priority level

of its fan-out edge) .

As an example, the numbers adjacent to the nodes in
Fig. 1(a) indicate their associated priority levels. The priority
level of a task is an indication of the longest path from the task
to a task with a specified deadline in terms of computation and
communication costs and the deadline. To reduce the schedule
length, we need to decrease the length of the longest path by
clustering of tasks along it to make the communication costs
along the path zero (this is based on the traditional assumption
made in distributed computing that intra-PE communication
takes zero time). Then the process can be repeated for the
longest path formed by the yet unclustered tasks, and so on.

To ensure load balancing among various PE’s, the cluster
size is limited by a parameter called cluster-size threshold.

is set equal to the hyperperiod. Let there be PE’s
in the PE library to which cluster is allocatable. Thus,
preference_vector will have 1’s corresponding to these
PE’s. For any cluster containing tasks ,
its size, denoted as , is estimated as follows. Letdenote the
period of the tasks in cluster and let be the hyperperiod.
Then

To take into consideration the worst-case allocation, we
obtain as the maximum over all PE’s of the summation
of the execution times of all copies of all tasks in cluster

. Fig. 6 gives the critical path-based clustering procedure.

Fig. 7. The cluster growth procedure.

Initially, we sort all tasks in the order of decreasing priority
levels. We pick the unclustered taskwith the highest priority
level and mark it clustered. Then we find the fan-in set of

, which is a set of fan-in tasks that meet the following
constraints:

1) the fan-in task is not clustered with another fan-out task;
2) the fan-in task’s cluster is compatible with ;
3) the size of cluster does not exceed .

If the fan-in set of is not empty, we identify an eligible
cluster which is grown (i.e., expanded) using the cluster growth
procedure given in Fig. 7. If the fan-in set of is empty, we
allocate a new cluster , and use the cluster growth procedure
to expand it.

The cluster growth procedure adds taskto the feasible
cluster identified from the fan-in set or to a new cluster, and
grows the cluster further, if possible, by adding one of the
compatible fan-out tasks of along which the priority level
of is the highest. It recomputes the priority levels of the
tasks in the task graph of after clustering either with any
existing cluster or after clustering it with one of its fan-out
tasks. This lets us identify and compress the critical path as
it changes.

Consider the task graph in Fig. 8. For simplicity, assume
that the resource library contains only one PE and one link.
The execution and communication times are given in nonbold
numbers next to nodes and edges, respectively. The deadline
of this task graph is 34. The bold numbers indicate the initial
priority levels of tasks and edges. Application of the clustering
procedure from [12] results in two clusters: and

. The resulting architecture consists of two identical PE’s
connected with a link. The PFT with this architecture is

98 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

Fig. 8. A task graph to illustrate clustering.

35, which exceeds the deadline. However, our clustering
procedure starts with task , which has the highest priority
level, and groups it with task since has a higher
priority level along the edge to task . At this point, the
communication time of edge is made zero and the priority
levels recomputed. Since task now has a higher priority
level than task , clustering starts afresh from. The resultant
clusters are and . The PFT is 34 with the two
PE/one-link architecture, which meets the deadline. A task
around which either a new cluster is formed or expanded
is termed as theseed of the cluster. In [12], the seed is
always the task that has just been clustered. In our method,
we look for the best seed at each clustering step, giving
it an advantage. Clustering of tasks can change the priority
levels of the remaining tasks in the task graph. Therefore,
it may impact the critical path. Although not illustrated by
the example in Fig. 8, recomputing priority levels gives our
method an additional advantage in accurately identifying a
critical path, while taking into account the impact of clustering
on priority levels of unclustered tasks.

The application of the clustering procedure to the task
graph of Fig. 1(a) results in three clusters,C1, C2, and C3,
as shown in Fig. 1(d). Once the clusters are formed, some
tasks are replicated in two or more clusters to address inter-
cluster communication bottlenecks [15]. This is useful when
the increase in computation time is less than the decrease in the
communication time. We replicate only those tasks which are
compatible with the cluster. During the allocation step, if the
two clusters are allocated to the same PE, then the replicated
tasks are no longer needed to address the communication
bottleneck(s). In that case, they are removed from the clusters.

C. Cluster Allocation

Once the clusters are formed, we need to allocate them.
We define the priority level of a cluster to be the maximum
of the priority levels of the constituent tasks and incoming
edges. Clusters are ordered based on decreasing priority levels.
After the allocation of each cluster, we recalculate the priority
level of each task and cluster. We pick the cluster with the
highest priority level and create an allocation array. We order
the allocations in this array in increasing cost order. We then
use the inner loop of co-synthesis to evaluate the allocations.

An allocation array is created using the procedure given
in Fig. 9. Architectural hints are used to pre-store allocation
templates. We allow the addition of only two new PE’s and

Fig. 9. The allocation array formation procedure.

links at any allocation step in order to keep the size of the
allocation array manageable. During allocation array creation,
for each allocation we check for signal compatibility (5-V
CMOS–3.3-V CMOS, CMOS-TTL, etc.), and add voltage
translation buffers.1 We exclude those allocations for which
the pin count, gate count, communication port count, memory
limits, and peak power dissipation are exceeded. The alloca-
tions in the array are ordered based on dollar cost. If power is
being optimized, the ordering is done based on average power
dissipation. Once the allocation array is formed, we mark
all allocations as unvisited. We pick the unvisited allocation
with the least dollar cost, mark it visited, and go through
scheduling, performance estimation, and allocation evaluation
steps described next.

D. Scheduling

We use a priority-level-based static scheduler for scheduling
tasks and edges on all PE’s and links in the architecture. This
is based on the list scheduling philosophy [16]. We generally
schedule only the first copy of the task. The start and finish
times of the remaining copies are updated in the association
array, as discussed earlier. The remaining copies need to be
scheduled only when a required execution slot for a subsequent
copy is already occupied by a copy of a previously scheduled
higher priority task. This occurs when the higher priority task
has a different period or different execution time or different
start time. To illustrate this scenario, consider the task graphs
shown in Fig. 10(a). For simplicity, assume that there is only
one task in each task graph. The numbers next to tasks in
Fig. 10(a) denote their execution time on the sole PE-type
available. The hyperperiod of these two task graphs is 60.
Therefore, three copies of task graph 1 and two copies of task
graph 2 are required in the hyperperiod, denoted as 1, 1 , 1 ,
and 2 , 2 , respectively. The priority levels of tasks 1and
2 are 6 and 20, respectively. Hence, task 1is scheduled
first. The schedule of tasks 1and 1 are derived using the
association array by simply adding its period to the schedule

1M. McClear, “Low-cost, low-power level shifting in mixed-voltage sys-
tems,” Applicat. Notes, SCBA002, Texas Instruments, Dallas, TX, 1996.

DAVE et al.: COSYN: HARDWARE–SOFTWARE CO-SYNTHESIS OF HETEROGENEOUS DISTRIBUTED EMBEDDED SYSTEMS 99

Fig. 10. Scheduling of different copies.

Fig. 11. The procedure for scheduling task graphs.

of task 1 . The resulting schedule is shown in Fig. 10(b).
Next, task 2 is scheduled in the first available slot {10,14}.
The resulting schedule is shown in Fig. 10(c). Based on the
schedule of the first copy, the desired schedule for task 2is

. However, this execution slot is
not available. Hence, task 2is scheduled in the first available
slot after that, which is {50,54}. The resulting schedule is
shown in Fig. 10(d).

We use the procedure outlined in Fig. 11 to schedule
tasks and edges. We first identify the copies of tasks which
require a hyperperiod spill, and add the hyperperiod to their
priority levels. We order tasks and edges based on the de-
creasing order of their priority levels. If two tasks (edges)
have equal priority levels then we schedule the task (edge)
with the shorter execution (communication) time first. While
scheduling communication edges, the scheduler considers the
mode of communication (sequential or concurrent) supported
by the link and processor. Though preemptive scheduling is
sometimes not desirable due to the overhead associated with

it, it may be necessary to obtain an efficient architecture. In
order to decide whether to preempt or not, we use the following
criteria. Let and be the priority levels of tasks and ,
respectively, and let and be their execution times on
PE . Let be the preemption overhead on PEto which
tasks and are allocated. Let be the best-case finish
time (this takes into account) and be the deadline
of task . We allow preemption of task by under the
following two scenarios: 1) or 2) is a sink task,
and .

Preemption of a higher priority task by a lower priority task
is allowed only in the case when the higher priority task is a
sink task which will not miss its deadline, in order to minimize
the scheduling complexity. This is important since scheduling
is in the inner loop of co-synthesis. Architectural hints are
checked for each task before allowing preemption since an
embedded-system specification may require that some critical
tasks not be preempted irrespective of their priority levels.

E. System Performance Estimation

We store the best- and worst-case start and finish times
of each task and edge. Each node (communication edge) in
the task graph has the minimum and maximum entries in the
corresponding execution (communication) vector associated
with it. When a task (edge) gets allocated, its minimum and
maximum execution (communication) times become equal and
correspond to the execution (communication) time on the PE
(link) to which it is allocated, as shown in Fig. 1(d) (here,
clusterC1 is assumed to be mapped toPE2). The FTE step,
after each scheduling step, updates the best- and worst-case
finish times of all tasks and edges. This is done as follows.
Let and represent best- and worst-case finish times,
respectively. The best- and worst-case finish times for a task
and edge are estimated using the following equations:

and

where , the set of input edges of

and

where is the source node of edge.
Let us next apply the above FTE method to our task graph of

Fig. 1(a). Suppose clusterC1 is allocated toPE2, as mentioned
before. Then we would obtain the FTE graph of Fig. 1(d),
which indicates that the best- and worst-case finish times of
sink task are 150 and 200, respectively.

F. Allocation Evaluation

Each allocation is evaluated based on the total dollar cost.
For hardware cost estimation, we use the incremental cost-
estimation approach [17]. We pick the allocation which at

100 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

least meets the deadlines in the best case. If no such allocation
exists, we pick an allocation for which the summation of the
best-case finish times of all task graphs is maximum. The
best-case finish time of a task graph is the maximum of the
best-case finish times of the constituent tasks with specified
deadlines. This generally leads to a less expensive architecture
since a larger finish time generally corresponds to a less
expensive architecture. If there is more than one allocation
which meet this criterion, we choose the allocation for which
the summation of the worst-case finish times of all task graphs
is maximum. The reason behind using the “maximum” instead
of “minimum” in the above cases is that, at intermediate steps,
we would like to be as frugal as possible with respect to the
total dollar cost of the architecture. If deadlines are not met,
we can always upgrade the architecture at a later step.

G. Support of Multiple Supply Voltages

Our co-synthesis algorithm supports a resource library in
which different PE’s require different supply voltages. This
allows mixing of different technologies and derivation of
power-efficient architectures by taking advantage of state-
of-the-art low-power technology. Support of multiple supply
voltages requires checking of signal voltage level compatibility
for each communication link/PE interface, inclusion of voltage
level translation buffers in the architecture, and estimation of
power requirements for multiple voltage levels. The power
dissipation in translation buffers is computed considering
its average quiescent power dissipation, frequency of the
communicating link, and the activity factor of the signal.1

Once the architecture is defined, we determine the power-
distribution architecture of the system and add the required
power-supply converters [18]. This defines the power-supply
capacity and the interconnection of various power converters
to meet the power requirements of the embedded system.

H. Application of the Co-Synthesis Algorithm

We next apply our co-synthesis algorithm to the task graph
of Fig. 1(a). The three clusters shown in Fig. 1(d) are ordered
based on the decreasing value of their priority levels. Fig. 12
illustrates the allocation of various clusters. Since cluster
C1 has the highest priority level, it is allocated first to the
cheaper processorPE2 [Fig. 12(a)]. The PFT of the task graph
is estimated to be {150, 200} [Fig. 1(d)]. Since the best-
case estimated finish time does not meet the deadline, the
partial architecture is upgraded. Therefore,C1 is allocated to
processorPE1 [Fig. 12(b)]. Since the deadline is still not met
and all possible allocations are explored, clusterC1 is marked
as allocated and clusterC2 is considered for allocation. First,
an attempt is made to allocate clusterC2 to the current PE
[Fig. 12(c)]. Finish-time estimation indicates that the deadline
can be met in the best case. Hence, clusterC3 is considered
for allocation next. Again, an attempt is first made to allocate
cluster C3 to PE1 [Fig. 12(d)]. Since the deadline is not
met in the best case, the architecture needs to be upgraded
[Fig. 12(e)]. Since the deadline is still not met, the architecture
is upgraded again [Fig. 12(f)]. Now that the deadline is met

Fig. 12. Stepping through co-synthesis.

and all clusters are allocated, the final architecture is given in
Fig. 12(f).

IV. CO-SYNTHESIS OF LOW-POWER EMBEDDED SYSTEMS

In this section, we describe the co-synthesis system for low-
power, called COSYN-LP. The basic co-synthesis procedure
outlined in Fig. 2 is also used in COSYN- LP. The parsing and
association array formation steps remain the same as before.
We describe next how the other steps are modified.

A. Task Clustering

We use deadline-based priority levels to choose a task for
clustering. However, once the task is picked, it is grouped
with a task along which it has the highest energy level to
form clusters. This makes the communication time as well
as communication energy for such inter-task edges zero. The
energy level concept also takes into account the quiescent
energy dissipation in PE’s and links. This is why we target
energy levels even though our ultimate goal is to minimize
average power dissipation subject to the given real-time and
peak power constraints.

Energy levels are assigned as follows.

1) For each task (edge), determine the average en-
ergy dissipation, as multiplied by
the average power dissipation on the corresponding
PE (link). and are chosen because
meeting real-time constraints is most important. Mark
all tasks as unvisited.

2) For each unvisited task in the task graph, do the
following.

a) If is a sink task, energy level, [average
energy of task]. Mark visited.

b) If is not a sink task, for each edge
in the set of fan-out edges of task, energy level

(energy level average energy
average energy). Mark as visited.

The cluster formation procedure is the same as before,
except that we use energy levels instead of priority levels.

DAVE et al.: COSYN: HARDWARE–SOFTWARE CO-SYNTHESIS OF HETEROGENEOUS DISTRIBUTED EMBEDDED SYSTEMS 101

Fig. 13. Task clustering for low power.

The energy levels are recomputed after the clustering of each
node. Once clustering is done, we replicate some tasks in
more than one cluster to eliminate inter-cluster communication
bottlenecks as before [15]. Consider the task graph shown
in Fig. 13(a). The numbers in brackets (bold) indicate initial
energy (priority) levels. They have been derived from the
vectors given in Fig. 13(f). Application of COSYN results
in two clustersC1 and C2 [Fig. 13(b)], and the architecture
shown in Fig. 13(c). For simplicity, only one PE and link are
assumed to be present, whose costs are shown in Fig. 13(c).
COSYN-LP results in a different clustering [Fig. 13(d)], and
the architecture shown in Fig. 13(e). It reduces energy con-
sumption from 60 to 55.25 units with a minor increase in the
finish time, while still meeting the deadline. For simplicity, we
have assumed the quiescent power dissipation in the PE’s/links
to be zero. However, in general, we take this into account, as
explained later.

B. Cluster Allocation and Performance Evaluation

In the outer loop of co-synthesis, the allocation array is
created, as before, for each cluster, and each allocation is
checked to see if the peak power dissipation and memory
capacity (for general-purpose processors) of the associated
PE/link is exceeded. To each link of the allocation, we add
the required voltage translation buffer if needed. Entries in
the allocation array are ordered based on increasing average
power dissipation. If there is more than one allocation with
equal average power dissipation, then the allocation with the
least dollar cost is chosen. Further ties are broken based on
peak power dissipation. In the inner loop of co-synthesis, in
addition to FTE, architecture energy/power estimation is also
performed as follows.

1) Processor/Link:The average and peak power are esti-
mated based on the tasks (edges) allocated to the processor

(link). Let be the set of tasks (edges)
assigned to theth processor (th link). The peak power
for and are peak power and peak
power , respectively. These should not exceed
the specified peak power constraints. Let and represent
the average energy, and quiescent average power dissipation,
respectively. Let represent the idle time in the hyperperiod.
Let be the number of times that task (edge) is
executed in the hyperperiod. The average energy forand
is estimated using the following equations:

The average power dissipation of and is estimated by
dividing their energy dissipation by the hyperperiod.

2) FPGA/ASIC: Tasks assigned to FPGA’s and ASIC’s
can run simultaneously. Therefore, the peak power of an
FPGA/ASIC is the summation of the peak power required
by all tasks assigned to them and the quiescent power of the
unused portion of the FPGA/ASIC. The average energy/power
estimation procedure is similar to the one given above.

3) System Power Dissipation:The average power dissipa-
tion of the partial architecture is estimated by dividing the total
estimated energy in its PE’s/links by the hyperperiod.

During the allocation evaluation step, we pick the allocation
which at least meets the deadline in the best case. If no
such allocation exists, we pick an allocation for which the
summation of the best-case finish times of the nodes with
specified deadlines in all task graphs is maximum.

102 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

TABLE I
EXPERIMENTAL RESULTS FOR TASK GRAPHS FROM THE LITERATURE

V. EXPERIMENTAL RESULTS

Our co-synthesis algorithms, COSYN and COSYN-LP, are
implemented in C . Table I provides results on examples
from the literature. Prakash & Parker(0-4) are from [7].
Prakash & Parker(0) is the same as task 1 in [7]. Prakash
& Parker(1-3) are the same as task 2 in [7] with different
constraints. Prakash & Parker(4) is a combination of task 1
and task 2 from [7]. Yen & Wolf Ex is from [9]. Hou & Wolf
Ex(1,2) are from [10]. DSP is from [15] with deadline and
period assumed to be 6.5 s. The PE and link libraries used in
these results are the same as those used in the corresponding
references. As shown in Table I, COSYN consistently outper-
forms both MILP [7] and iterative improvement techniques
[9], [10]. For example, for Prakash & Parker(4), the MILP
technique required approximately 107 h of CPU time on
Solbourne5/e/900, and Yen and Wolf’s algorithm was unable
to find a solution, whereas COSYN was able to find the same
optimal solution as MILP in less than 1 s on Sparcstation 20
with 256-Mbytes random access memory (RAM).

We also ran COSYN and COSYN-LP on large Bell Lab-
oratories telecom transport systems task graphs representing
real-life field applications. They contain tasks for synchronous
optical network interface processing, asynchronous transfer-
mode cell processing, digital signal processing, provisioning,
transmission interfaces, performance monitoring, protection
switching, etc. Thy have wide variations in their periods rang-
ing from 25 s to 1 min. On an average, over 70% of tasks in
the task graphs are of different types. The general-purpose pro-
cessors had the real-time operating system, pSOS, running
on them. The execution times included the operating system
overhead. For results on these graphs, the PE library was
assumed to contain Motorola microprocessors 68360, 68040,
68060 (each processor with and without a 256-Kbyte second-
level cache), 11 ASIC’s, one XILINX 3195A FPGA, and
one ORCA 2T15 FPGA. For each general-purpose processor,
four DRAM banks providing up to 64-Mbyte capacity were
evaluated. DRAM devices with 60-ns access time were used.
The ASIC’s were based on the existing designs of various
telecommunication systems. For new functions, macro blocks

TABLE II
COSYN WITH ASSOCIATION ARRAY AND CLUSTERING

TABLE III
COSYN WITHOUT ASSOCIATION ARRAY

were synthesized for various standard-cell technologies and
FPGA families. The link library was assumed to contain a
680X0 bus, a 10-Mb/s LAN, and a 31-Mb/s serial link.

Results in Tables II–VI show that COSYN was also able
to handle the large telecom transport system task graphs
efficiently. Note that even architectures with the same number
of PE’s and links can have different cost because of different
PEs/links that may have been used. Also, two architectures
with equal cost and the same number and type of PE’s
and link can still have different power dissipation since they
may employ different schedules with different number of

DAVE et al.: COSYN: HARDWARE–SOFTWARE CO-SYNTHESIS OF HETEROGENEOUS DISTRIBUTED EMBEDDED SYSTEMS 103

TABLE IV
COSYN WITHOUT CLUSTERING

TABLE V
COSYN WITHOUT ASSOCIATION ARRAY AND CLUSTERING

TABLE VI
COSYN USING A RESOURCELIBRARY WITH 5-V PE’s ONLY

preemptions. For the results in Table II, COSYN was allowed
to use both the association array and task clustering. In
Table III, it was allowed the use of task clustering, but not
association array. In Table IV, it was allowed the use of
association array, but not task clustering. Finally, in Table V,
it was not allowed the use of either association array or
task clustering. From Tables II and III, we can see that the
association array concept reduces CPU time by an average of
81% (average is based on individual reductions) at an average
increase of 0.8% in embedded-system cost. From Tables II
and IV, we can see that task clustering reduces CPU time
by an average of 59% at an average increase of 0.9% in
embedded-system cost. From Tables II and V, we can see
that the combination of the association array concept and task
clustering results in an average reduction of 88% in CPU

TABLE VII
COSYN-LP

time at an average increase of 1.4% in embedded-system
cost. This enables the application of COSYN to very large
task graphs. However, since CPU time is not a big concern
for smaller task graphs with a well-behaved hyperperiod, we
have provided flags in our co-synthesis system to allow the
user to bypass association array formation or task clustering
or both. Tables II and VI show the importance of using a
resource library, which includes PE’s operating at different
supply voltages. While using a resource library with only 5-V
PE’s, the architecture was not feasible for BETS3 and BCS
since some of the associated tasks required PE’s with different
supply voltages. Support of multiple supply voltages results in
an average reduction of 33.4% in power dissipation and 12%
in embedded-system cost.

Table VII gives the results for COSYN-LP. COSYN-LP was
able to reduce power dissipation by an average of 19.6%
over COSYN (Table II) at an average increase of 13.9%
in embedded-system cost. For these results, both COSYN
and COSYN-LP were supplied with a resource library with
PE’s operating at different supply voltages. Also, as shown
in the last column of Table VII, the actual system power
measurements made on the COSYN-LP architectures indicate
that the error of the COSYN-LP power estimator is within 8%.

VI. CONCLUSION

We presented an efficient distributed system co-synthesis
algorithm. Even though it is a heuristic, experimental results
show that it produces optimal results for the examples from the
literature. It provides several orders of magnitude advantage in
CPU time over existing algorithms. This enables its application
to large examples for which experimental results are very
encouraging. Large real-life examples have not been tackled
previously in the literature. We have also presented one of the
first co-synthesis algorithms for power optimization. COSYN
is currently being used in Lucent Bell Laboratories to tackle
the next generation telecom transport system task graphs.

REFERENCES

[1] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[2] A. Kalavade and P. A. Subrahmanyam, “Hardware/software partitioning
for multi-function systems,” inProc. Int. Conf. Computer-Aided Design,
Nov. 1997, pp. 516–521.

104 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 7, NO. 1, MARCH 1999

[3] F. Balarin et al., Hardware-Software Co-Design of Embedded Systems:
The POLIS Approach. Norwell, MA: Kluwer, 1997.

[4] H. De Man et al., “Hardware–software codesign of digital telecommu-
nication systems,”Proc. IEEE, vol. 85, Apr. 1997.

[5] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong, “SpecSyn: An
environment supporting the specify-explore-refine paradigm for hard-
ware/software system design,” Univ. California, Riverside, CA, Tech.
Rep. CS-96-08, Sept. 1996.

[6] W. Wolf, “Hardware-software co-design of embedded systems,”Proc.
IEEE, vol. 82, pp. 967–989, July 1994.

[7] S. Prakash and A. Parker, “SOS: Synthesis of application-specific
heterogeneous multiprocessor systems,”J. Parallel & Distrib. Comput.,
vol. 16, pp. 338–351, Dec. 1992.

[8] J. G. D’Ambrosio and X. Hu, “Configuration-level hardware/software
partitioning for real-time systems,” inProc. Int. Workshop Hard-
ware–Software Co-Design, Sept. 1994, pp. 34–41.

[9] T.-Y. Yen and W. Wolf, “Communication synthesis for distributed
embedded systems,” inProc. Int. Conf. Computer-Aided Design, Nov.
1995, pp. 288–294.

[10] J. Hou and W. Wolf, “Process partitioning for distributed embedded
systems,” inProc. Int. Workship Hardware–Software Co-Design, Sept.
1996, pp. 70–76.

[11] D. Kirovski and M. Potkonjak, “System-level synthesis of low-power
real-time systems,” inProc. Design Automation Conf., June 1997, pp.
697–702.

[12] S. Srinivasan and N. K. Jha, “Hardware-software co-synthesis of fault-
tolerant real-time distributed embedded systems,” inProc. European
Design Automation Conf., Sept. 1995, pp. 334–339.

[13] Y.-T. S. Li, S. Malik, and A. Wolfe, “CINDERELLA: A retragetable
environment for performance analysis of real-time software,” inProc.
Euro-Par., 1997.

[14] E. Lawler and C. Martel, “Scheduling periodically occurring tasks on
multiple processors,”Inf. Process. Lett., vol. 7, pp. 9–12, Feb. 1981.

[15] S. Yajnik, S. Srinivasan, and N. K. Jha, “TBFT: A task based fault
tolerance scheme for distributed systems,” inProc. ISCA Int. Conf.
Parallel & Distrib. Comput. Syst., Oct. 1994, pp. 483–489.

[16] K. Ramamritham and J. A. Stankovic, “Scheduling algorithms and
operating systems support for real-time systems,”Proc. IEEE, vol. 82,
pp. 55–67, Jan. 1994.

[17] F. Vahid and D. Gajski, “Incremental hardware estimation during
hardware/software functional partitioning,”IEEE Trans. VLSI Syst., vol.
3, pp. 459–464, Sept. 1995.

[18] B. P. Dave, “Hardware/software co-design of heterogeneous real-time
distributed embedded systems,” Ph.D. dissertation, Elect. Eng. Dept.,
Princeton University, Princeton, NJ, 1998.

Bharat P. Dave(M’91) received the B.Tech. degree
in electronics and communications in India, the M.S.
degree in electrical engineering from Virginia Poly-
technic Institute and State University, Blacksburg,
VA, and the M.A. and Ph.D. degrees in electrical
engineering from Princeton University, Princeton,
NJ.

Since 1986, he has been with Bell Laboratories,
Lucent Technologies, Holmdel, NJ, where he is cur-
rently a Distinguished Member of Technical Staff.
His research interests include hardware/software co-

design, fault-tolerant computing, optical networks, distributed and real-time
systems, telecom systems, and mobile computing.

Dr. Dave received the William C. Carter Award for his paper at the IEEE
International Symposium on Fault-Tolerant Computing in 1997. He also co-
authored a paper which was nominated for the Best Paper Award at the
DATE98 Conference.

Ganesh Lakshminarayana, for photograph and biography, see this issue, p.
14.

Niraj K. Jha (S’85–M’85–SM’93–F’98), for photograph and biography, see
this issue, p. 4.

